| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 2 |
|
axregscl |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴 ) ) ) |
| 3 |
|
disj1 |
⊢ ( ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴 ) ) |
| 4 |
3
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴 ) ) |
| 5 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴 ) ) ) |
| 6 |
4 5
|
bitr2i |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴 ) ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
| 7 |
2 6
|
sylib |
⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |
| 8 |
1 7
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ( 𝑥 ∩ 𝐴 ) = ∅ ) |