Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BTernaryTau
ZF set theory
Finitism
axregszf
Next ⟩
setindregs
Metamath Proof Explorer
Ascii
Unicode
Theorem
axregszf
Description:
Derivation of
zfregs
using
ax-regs
.
(Contributed by
BTernaryTau
, 30-Dec-2025)
Ref
Expression
Assertion
axregszf
⊢
A
≠
∅
→
∃
x
∈
A
x
∩
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
n0
⊢
A
≠
∅
↔
∃
x
x
∈
A
2
axregscl
⊢
∃
x
x
∈
A
→
∃
x
x
∈
A
∧
∀
y
y
∈
x
→
¬
y
∈
A
3
disj1
⊢
x
∩
A
=
∅
↔
∀
y
y
∈
x
→
¬
y
∈
A
4
3
rexbii
⊢
∃
x
∈
A
x
∩
A
=
∅
↔
∃
x
∈
A
∀
y
y
∈
x
→
¬
y
∈
A
5
df-rex
⊢
∃
x
∈
A
∀
y
y
∈
x
→
¬
y
∈
A
↔
∃
x
x
∈
A
∧
∀
y
y
∈
x
→
¬
y
∈
A
6
4
5
bitr2i
⊢
∃
x
x
∈
A
∧
∀
y
y
∈
x
→
¬
y
∈
A
↔
∃
x
∈
A
x
∩
A
=
∅
7
2
6
sylib
⊢
∃
x
x
∈
A
→
∃
x
∈
A
x
∩
A
=
∅
8
1
7
sylbi
⊢
A
≠
∅
→
∃
x
∈
A
x
∩
A
=
∅