Metamath Proof Explorer


Theorem axregscl

Description: A version of ax-regs with a class variable instead of a wff variable. Axiom D in Gödel,The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory (1940), p. 6. (Contributed by BTernaryTau, 30-Dec-2025)

Ref Expression
Assertion axregscl x x A y y A z z y ¬ z A

Proof

Step Hyp Ref Expression
1 eleq1w x = w x A w A
2 1 cbvexvw x x A w w A
3 ax-regs w w A y w w = y w A z z y ¬ w w = z w A
4 eleq1w w = y w A y A
5 4 equsalvw w w = y w A y A
6 eleq1w w = z w A z A
7 6 equsalvw w w = z w A z A
8 7 notbii ¬ w w = z w A ¬ z A
9 8 imbi2i z y ¬ w w = z w A z y ¬ z A
10 9 albii z z y ¬ w w = z w A z z y ¬ z A
11 5 10 anbi12i w w = y w A z z y ¬ w w = z w A y A z z y ¬ z A
12 11 exbii y w w = y w A z z y ¬ w w = z w A y y A z z y ¬ z A
13 3 12 sylib w w A y y A z z y ¬ z A
14 2 13 sylbi x x A y y A z z y ¬ z A