| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axsegconlem2.1 | ⊢ 𝑆  =  Σ 𝑝  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑝 )  −  ( 𝐵 ‘ 𝑝 ) ) ↑ 2 ) | 
						
							| 2 | 1 | axsegconlem4 | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( √ ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ≠  𝐵 )  →  ( √ ‘ 𝑆 )  ∈  ℝ ) | 
						
							| 4 | 1 | axsegconlem5 | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  0  ≤  ( √ ‘ 𝑆 ) ) | 
						
							| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ≠  𝐵 )  →  0  ≤  ( √ ‘ 𝑆 ) ) | 
						
							| 6 |  | eqeelen | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝐴  =  𝐵  ↔  Σ 𝑝  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑝 )  −  ( 𝐵 ‘ 𝑝 ) ) ↑ 2 )  =  0 ) ) | 
						
							| 7 | 1 | eqeq1i | ⊢ ( 𝑆  =  0  ↔  Σ 𝑝  ∈  ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑝 )  −  ( 𝐵 ‘ 𝑝 ) ) ↑ 2 )  =  0 ) | 
						
							| 8 | 6 7 | bitr4di | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝐴  =  𝐵  ↔  𝑆  =  0 ) ) | 
						
							| 9 | 1 | axsegconlem2 | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  𝑆  ∈  ℝ ) | 
						
							| 10 | 1 | axsegconlem3 | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  0  ≤  𝑆 ) | 
						
							| 11 |  | sqrt00 | ⊢ ( ( 𝑆  ∈  ℝ  ∧  0  ≤  𝑆 )  →  ( ( √ ‘ 𝑆 )  =  0  ↔  𝑆  =  0 ) ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( ( √ ‘ 𝑆 )  =  0  ↔  𝑆  =  0 ) ) | 
						
							| 13 | 8 12 | bitr4d | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝐴  =  𝐵  ↔  ( √ ‘ 𝑆 )  =  0 ) ) | 
						
							| 14 | 13 | necon3bid | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 ) )  →  ( 𝐴  ≠  𝐵  ↔  ( √ ‘ 𝑆 )  ≠  0 ) ) | 
						
							| 15 | 14 | biimp3a | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ≠  𝐵 )  →  ( √ ‘ 𝑆 )  ≠  0 ) | 
						
							| 16 | 3 5 15 | ne0gt0d | ⊢ ( ( 𝐴  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐵  ∈  ( 𝔼 ‘ 𝑁 )  ∧  𝐴  ≠  𝐵 )  →  0  <  ( √ ‘ 𝑆 ) ) |