| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 2  ·  𝑚 )  =  ( 2  ·  𝑛 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 2  ·  𝑚 )  +  1 )  =  ( ( 2  ·  𝑛 )  +  1 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 4 | 3 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚 ↑ - 2 )  =  ( 𝑛 ↑ - 2 ) ) | 
						
							| 6 | 5 | cbvmptv | ⊢ ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑ - 2 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) | 
						
							| 7 |  | seqeq3 | ⊢ ( ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑ - 2 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) )  →  seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑ - 2 ) ) )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ seq 1 (  +  ,  ( 𝑚  ∈  ℕ  ↦  ( 𝑚 ↑ - 2 ) ) )  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) )  =  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) ) )  =  ( ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) )  =  ( ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( 𝑚  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑚 )  +  1 ) ) ) ) ) | 
						
							| 12 | 4 8 9 10 11 | basellem9 | ⊢ Σ 𝑘  ∈  ℕ ( 𝑘 ↑ - 2 )  =  ( ( π ↑ 2 )  /  6 ) |