| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 2 |  | basel.f | ⊢ 𝐹  =  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) ) | 
						
							| 3 |  | basel.h | ⊢ 𝐻  =  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ) | 
						
							| 4 |  | basel.j | ⊢ 𝐽  =  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) | 
						
							| 5 |  | basel.k | ⊢ 𝐾  =  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 ) ) | 
						
							| 6 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 7 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑛 ↑ - 2 )  =  ( 𝑘 ↑ - 2 ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) | 
						
							| 10 |  | ovex | ⊢ ( 𝑘 ↑ - 2 )  ∈  V | 
						
							| 11 | 8 9 10 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) ‘ 𝑘 )  =  ( 𝑘 ↑ - 2 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) ‘ 𝑘 )  =  ( 𝑘 ↑ - 2 ) ) | 
						
							| 13 |  | nnre | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℝ ) | 
						
							| 14 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 15 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 16 |  | znegcl | ⊢ ( 2  ∈  ℤ  →  - 2  ∈  ℤ ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ - 2  ∈  ℤ | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑛  ∈  ℕ  →  - 2  ∈  ℤ ) | 
						
							| 19 | 13 14 18 | reexpclzd | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛 ↑ - 2 )  ∈  ℝ ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 𝑛 ↑ - 2 )  ∈  ℝ ) | 
						
							| 21 | 20 9 | fmptd | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) : ℕ ⟶ ℝ ) | 
						
							| 22 | 21 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 23 | 12 22 | eqeltrrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑘 ↑ - 2 )  ∈  ℝ ) | 
						
							| 24 | 23 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑘 ↑ - 2 )  ∈  ℂ ) | 
						
							| 25 | 6 7 22 | serfre | ⊢ ( ⊤  →  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 26 | 2 | feq1i | ⊢ ( 𝐹 : ℕ ⟶ ℝ  ↔  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 27 | 25 26 | sylibr | ⊢ ( ⊤  →  𝐹 : ℕ ⟶ ℝ ) | 
						
							| 28 | 27 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 29 | 28 | recnd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 30 |  | remulcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 32 |  | ovex | ⊢ ( ( π ↑ 2 )  /  6 )  ∈  V | 
						
							| 33 | 32 | fconst | ⊢ ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) : ℕ ⟶ { ( ( π ↑ 2 )  /  6 ) } | 
						
							| 34 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 35 | 34 | resqcli | ⊢ ( π ↑ 2 )  ∈  ℝ | 
						
							| 36 |  | 6re | ⊢ 6  ∈  ℝ | 
						
							| 37 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 38 | 37 | nnne0i | ⊢ 6  ≠  0 | 
						
							| 39 | 35 36 38 | redivcli | ⊢ ( ( π ↑ 2 )  /  6 )  ∈  ℝ | 
						
							| 40 | 39 | a1i | ⊢ ( ⊤  →  ( ( π ↑ 2 )  /  6 )  ∈  ℝ ) | 
						
							| 41 | 40 | snssd | ⊢ ( ⊤  →  { ( ( π ↑ 2 )  /  6 ) }  ⊆  ℝ ) | 
						
							| 42 |  | fss | ⊢ ( ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) : ℕ ⟶ { ( ( π ↑ 2 )  /  6 ) }  ∧  { ( ( π ↑ 2 )  /  6 ) }  ⊆  ℝ )  →  ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) : ℕ ⟶ ℝ ) | 
						
							| 43 | 33 41 42 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) : ℕ ⟶ ℝ ) | 
						
							| 44 |  | resubcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  −  𝑦 )  ∈  ℝ ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝑥  −  𝑦 )  ∈  ℝ ) | 
						
							| 46 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 47 | 46 | fconst | ⊢ ( ℕ  ×  { 1 } ) : ℕ ⟶ { 1 } | 
						
							| 48 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 49 | 48 | snssd | ⊢ ( ⊤  →  { 1 }  ⊆  ℝ ) | 
						
							| 50 |  | fss | ⊢ ( ( ( ℕ  ×  { 1 } ) : ℕ ⟶ { 1 }  ∧  { 1 }  ⊆  ℝ )  →  ( ℕ  ×  { 1 } ) : ℕ ⟶ ℝ ) | 
						
							| 51 | 47 49 50 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { 1 } ) : ℕ ⟶ ℝ ) | 
						
							| 52 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 53 | 52 | a1i | ⊢ ( ⊤  →  2  ∈  ℕ ) | 
						
							| 54 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  ( 2  ·  𝑛 )  ∈  ℕ ) | 
						
							| 55 | 53 54 | sylan | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 2  ·  𝑛 )  ∈  ℕ ) | 
						
							| 56 | 55 | peano2nnd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 57 | 56 | nnrecred | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℝ ) | 
						
							| 58 | 57 1 | fmptd | ⊢ ( ⊤  →  𝐺 : ℕ ⟶ ℝ ) | 
						
							| 59 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 60 | 59 | a1i | ⊢ ( ⊤  →  ℕ  ∈  V ) | 
						
							| 61 |  | inidm | ⊢ ( ℕ  ∩  ℕ )  =  ℕ | 
						
							| 62 | 45 51 58 60 60 61 | off | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) : ℕ ⟶ ℝ ) | 
						
							| 63 | 31 43 62 60 60 61 | off | ⊢ ( ⊤  →  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ) : ℕ ⟶ ℝ ) | 
						
							| 64 | 3 | feq1i | ⊢ ( 𝐻 : ℕ ⟶ ℝ  ↔  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ) : ℕ ⟶ ℝ ) | 
						
							| 65 | 63 64 | sylibr | ⊢ ( ⊤  →  𝐻 : ℕ ⟶ ℝ ) | 
						
							| 66 |  | readdcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  +  𝑦 )  ∈  ℝ ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℝ ) | 
						
							| 68 |  | negex | ⊢ - 2  ∈  V | 
						
							| 69 | 68 | fconst | ⊢ ( ℕ  ×  { - 2 } ) : ℕ ⟶ { - 2 } | 
						
							| 70 | 17 | zrei | ⊢ - 2  ∈  ℝ | 
						
							| 71 | 70 | a1i | ⊢ ( ⊤  →  - 2  ∈  ℝ ) | 
						
							| 72 | 71 | snssd | ⊢ ( ⊤  →  { - 2 }  ⊆  ℝ ) | 
						
							| 73 |  | fss | ⊢ ( ( ( ℕ  ×  { - 2 } ) : ℕ ⟶ { - 2 }  ∧  { - 2 }  ⊆  ℝ )  →  ( ℕ  ×  { - 2 } ) : ℕ ⟶ ℝ ) | 
						
							| 74 | 69 72 73 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { - 2 } ) : ℕ ⟶ ℝ ) | 
						
							| 75 | 31 74 58 60 60 61 | off | ⊢ ( ⊤  →  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) : ℕ ⟶ ℝ ) | 
						
							| 76 | 67 51 75 60 60 61 | off | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) : ℕ ⟶ ℝ ) | 
						
							| 77 | 31 65 76 60 60 61 | off | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 78 | 4 | feq1i | ⊢ ( 𝐽 : ℕ ⟶ ℝ  ↔  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 79 | 77 78 | sylibr | ⊢ ( ⊤  →  𝐽 : ℕ ⟶ ℝ ) | 
						
							| 80 | 79 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 𝐽 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 81 | 80 | recnd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 𝐽 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 82 | 29 81 | npcand | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( ( ( 𝐹 ‘ 𝑛 )  −  ( 𝐽 ‘ 𝑛 ) )  +  ( 𝐽 ‘ 𝑛 ) )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 83 | 82 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐹 ‘ 𝑛 )  −  ( 𝐽 ‘ 𝑛 ) )  +  ( 𝐽 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 84 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝐽 ‘ 𝑛 ) )  ∈  V ) | 
						
							| 85 | 27 | feqmptd | ⊢ ( ⊤  →  𝐹  =  ( 𝑛  ∈  ℕ  ↦  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 86 | 79 | feqmptd | ⊢ ( ⊤  →  𝐽  =  ( 𝑛  ∈  ℕ  ↦  ( 𝐽 ‘ 𝑛 ) ) ) | 
						
							| 87 | 60 28 80 85 86 | offval2 | ⊢ ( ⊤  →  ( 𝐹  ∘f   −  𝐽 )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐹 ‘ 𝑛 )  −  ( 𝐽 ‘ 𝑛 ) ) ) ) | 
						
							| 88 | 60 84 80 87 86 | offval2 | ⊢ ( ⊤  →  ( ( 𝐹  ∘f   −  𝐽 )  ∘f   +  𝐽 )  =  ( 𝑛  ∈  ℕ  ↦  ( ( ( 𝐹 ‘ 𝑛 )  −  ( 𝐽 ‘ 𝑛 ) )  +  ( 𝐽 ‘ 𝑛 ) ) ) ) | 
						
							| 89 | 83 88 85 | 3eqtr4d | ⊢ ( ⊤  →  ( ( 𝐹  ∘f   −  𝐽 )  ∘f   +  𝐽 )  =  𝐹 ) | 
						
							| 90 | 67 51 58 60 60 61 | off | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 ) : ℕ ⟶ ℝ ) | 
						
							| 91 |  | recn | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℂ ) | 
						
							| 92 |  | recn | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℂ ) | 
						
							| 93 |  | recn | ⊢ ( 𝑧  ∈  ℝ  →  𝑧  ∈  ℂ ) | 
						
							| 94 |  | subdi | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( 𝑥  ·  ( 𝑦  −  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  −  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 95 | 91 92 93 94 | syl3an | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑥  ·  ( 𝑦  −  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  −  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑧  ∈  ℝ ) )  →  ( 𝑥  ·  ( 𝑦  −  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  −  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 97 | 60 65 90 76 96 | caofdi | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) )  =  ( ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 ) )  ∘f   −  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) ) ) | 
						
							| 98 | 5 4 | oveq12i | ⊢ ( 𝐾  ∘f   −  𝐽 )  =  ( ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 ) )  ∘f   −  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) ) | 
						
							| 99 | 97 98 | eqtr4di | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) )  =  ( 𝐾  ∘f   −  𝐽 ) ) | 
						
							| 100 | 39 | recni | ⊢ ( ( π ↑ 2 )  /  6 )  ∈  ℂ | 
						
							| 101 | 6 | eqimss2i | ⊢ ( ℤ≥ ‘ 1 )  ⊆  ℕ | 
						
							| 102 | 101 59 | climconst2 | ⊢ ( ( ( ( π ↑ 2 )  /  6 )  ∈  ℂ  ∧  1  ∈  ℤ )  →  ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ⇝  ( ( π ↑ 2 )  /  6 ) ) | 
						
							| 103 | 100 7 102 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ⇝  ( ( π ↑ 2 )  /  6 ) ) | 
						
							| 104 |  | ovexd | ⊢ ( ⊤  →  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) )  ∈  V ) | 
						
							| 105 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 106 |  | fss | ⊢ ( ( ( ℕ  ×  { 1 } ) : ℕ ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  ( ℕ  ×  { 1 } ) : ℕ ⟶ ℂ ) | 
						
							| 107 | 51 105 106 | sylancl | ⊢ ( ⊤  →  ( ℕ  ×  { 1 } ) : ℕ ⟶ ℂ ) | 
						
							| 108 |  | fss | ⊢ ( ( 𝐺 : ℕ ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝐺 : ℕ ⟶ ℂ ) | 
						
							| 109 | 58 105 108 | sylancl | ⊢ ( ⊤  →  𝐺 : ℕ ⟶ ℂ ) | 
						
							| 110 |  | ofnegsub | ⊢ ( ( ℕ  ∈  V  ∧  ( ℕ  ×  { 1 } ) : ℕ ⟶ ℂ  ∧  𝐺 : ℕ ⟶ ℂ )  →  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ) | 
						
							| 111 | 59 107 109 110 | mp3an2i | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ) | 
						
							| 112 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 113 | 1 112 | basellem7 | ⊢ ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  ⇝  1 | 
						
							| 114 | 111 113 | eqbrtrrdi | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 )  ⇝  1 ) | 
						
							| 115 | 43 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 116 | 115 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 117 | 62 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 118 | 117 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 119 | 43 | ffnd | ⊢ ( ⊤  →  ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  Fn  ℕ ) | 
						
							| 120 |  | fnconstg | ⊢ ( 1  ∈  ℤ  →  ( ℕ  ×  { 1 } )  Fn  ℕ ) | 
						
							| 121 | 7 120 | syl | ⊢ ( ⊤  →  ( ℕ  ×  { 1 } )  Fn  ℕ ) | 
						
							| 122 | 58 | ffnd | ⊢ ( ⊤  →  𝐺  Fn  ℕ ) | 
						
							| 123 | 121 122 60 60 61 | offn | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 )  Fn  ℕ ) | 
						
							| 124 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) ‘ 𝑘 )  =  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) ‘ 𝑘 ) ) | 
						
							| 125 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ‘ 𝑘 ) ) | 
						
							| 126 | 119 123 60 60 61 124 125 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } ) ‘ 𝑘 )  ·  ( ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 127 | 6 7 103 104 114 116 118 126 | climmul | ⊢ ( ⊤  →  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) )  ⇝  ( ( ( π ↑ 2 )  /  6 )  ·  1 ) ) | 
						
							| 128 | 100 | mulridi | ⊢ ( ( ( π ↑ 2 )  /  6 )  ·  1 )  =  ( ( π ↑ 2 )  /  6 ) | 
						
							| 129 | 127 128 | breqtrdi | ⊢ ( ⊤  →  ( ( ℕ  ×  { ( ( π ↑ 2 )  /  6 ) } )  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   −  𝐺 ) )  ⇝  ( ( π ↑ 2 )  /  6 ) ) | 
						
							| 130 | 3 129 | eqbrtrid | ⊢ ( ⊤  →  𝐻  ⇝  ( ( π ↑ 2 )  /  6 ) ) | 
						
							| 131 |  | ovexd | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) )  ∈  V ) | 
						
							| 132 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 133 | 101 59 | climconst2 | ⊢ ( ( 3  ∈  ℂ  ∧  1  ∈  ℤ )  →  ( ℕ  ×  { 3 } )  ⇝  3 ) | 
						
							| 134 | 132 7 133 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { 3 } )  ⇝  3 ) | 
						
							| 135 |  | ovexd | ⊢ ( ⊤  →  ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 )  ∈  V ) | 
						
							| 136 | 1 | basellem6 | ⊢ 𝐺  ⇝  0 | 
						
							| 137 | 136 | a1i | ⊢ ( ⊤  →  𝐺  ⇝  0 ) | 
						
							| 138 |  | 3ex | ⊢ 3  ∈  V | 
						
							| 139 | 138 | fconst | ⊢ ( ℕ  ×  { 3 } ) : ℕ ⟶ { 3 } | 
						
							| 140 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 141 | 140 | a1i | ⊢ ( ⊤  →  3  ∈  ℝ ) | 
						
							| 142 | 141 | snssd | ⊢ ( ⊤  →  { 3 }  ⊆  ℝ ) | 
						
							| 143 |  | fss | ⊢ ( ( ( ℕ  ×  { 3 } ) : ℕ ⟶ { 3 }  ∧  { 3 }  ⊆  ℝ )  →  ( ℕ  ×  { 3 } ) : ℕ ⟶ ℝ ) | 
						
							| 144 | 139 142 143 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { 3 } ) : ℕ ⟶ ℝ ) | 
						
							| 145 | 144 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 3 } ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 146 | 145 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 3 } ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 147 | 58 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 148 | 147 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 149 | 144 | ffnd | ⊢ ( ⊤  →  ( ℕ  ×  { 3 } )  Fn  ℕ ) | 
						
							| 150 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 3 } ) ‘ 𝑘 )  =  ( ( ℕ  ×  { 3 } ) ‘ 𝑘 ) ) | 
						
							| 151 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 152 | 149 122 60 60 61 150 151 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { 3 } ) ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 153 | 6 7 134 135 137 146 148 152 | climmul | ⊢ ( ⊤  →  ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 )  ⇝  ( 3  ·  0 ) ) | 
						
							| 154 | 132 | mul01i | ⊢ ( 3  ·  0 )  =  0 | 
						
							| 155 | 153 154 | breqtrdi | ⊢ ( ⊤  →  ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 )  ⇝  0 ) | 
						
							| 156 | 65 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 157 | 156 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 158 | 31 144 58 60 60 61 | off | ⊢ ( ⊤  →  ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 ) : ℕ ⟶ ℝ ) | 
						
							| 159 | 158 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 160 | 159 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 161 | 65 | ffnd | ⊢ ( ⊤  →  𝐻  Fn  ℕ ) | 
						
							| 162 | 45 90 76 60 60 61 | off | ⊢ ( ⊤  →  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) : ℕ ⟶ ℝ ) | 
						
							| 163 | 162 | ffnd | ⊢ ( ⊤  →  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) )  Fn  ℕ ) | 
						
							| 164 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐻 ‘ 𝑘 )  =  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 165 | 148 | mullidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  ·  ( 𝐺 ‘ 𝑘 ) )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 166 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 167 |  | mulneg1 | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝐺 ‘ 𝑘 )  ∈  ℂ )  →  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) )  =  - ( 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 168 | 166 148 167 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) )  =  - ( 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 169 | 168 | negeqd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  - ( - 2  ·  ( 𝐺 ‘ 𝑘 ) )  =  - - ( 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 170 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝐺 ‘ 𝑘 )  ∈  ℂ )  →  ( 2  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 171 | 166 148 170 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 172 | 171 | negnegd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  - - ( 2  ·  ( 𝐺 ‘ 𝑘 ) )  =  ( 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 173 | 169 172 | eqtr2d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  ( 𝐺 ‘ 𝑘 ) )  =  - ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 174 | 165 173 | oveq12d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 1  ·  ( 𝐺 ‘ 𝑘 ) )  +  ( 2  ·  ( 𝐺 ‘ 𝑘 ) ) )  =  ( ( 𝐺 ‘ 𝑘 )  +  - ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 175 |  | remulcl | ⊢ ( ( - 2  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑘 )  ∈  ℝ )  →  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 176 | 70 147 175 | sylancr | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 177 | 176 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 178 | 148 177 | negsubd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐺 ‘ 𝑘 )  +  - ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) )  =  ( ( 𝐺 ‘ 𝑘 )  −  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 179 | 174 178 | eqtrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 1  ·  ( 𝐺 ‘ 𝑘 ) )  +  ( 2  ·  ( 𝐺 ‘ 𝑘 ) ) )  =  ( ( 𝐺 ‘ 𝑘 )  −  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 180 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 181 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 182 | 166 181 | addcomi | ⊢ ( 2  +  1 )  =  ( 1  +  2 ) | 
						
							| 183 | 180 182 | eqtri | ⊢ 3  =  ( 1  +  2 ) | 
						
							| 184 | 183 | oveq1i | ⊢ ( 3  ·  ( 𝐺 ‘ 𝑘 ) )  =  ( ( 1  +  2 )  ·  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 185 |  | 1cnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 186 | 166 | a1i | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  2  ∈  ℂ ) | 
						
							| 187 | 185 186 148 | adddird | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 1  +  2 )  ·  ( 𝐺 ‘ 𝑘 ) )  =  ( ( 1  ·  ( 𝐺 ‘ 𝑘 ) )  +  ( 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 188 | 184 187 | eqtrid | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 3  ·  ( 𝐺 ‘ 𝑘 ) )  =  ( ( 1  ·  ( 𝐺 ‘ 𝑘 ) )  +  ( 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 189 | 185 148 177 | pnpcand | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 1  +  ( 𝐺 ‘ 𝑘 ) )  −  ( 1  +  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) )  =  ( ( 𝐺 ‘ 𝑘 )  −  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 190 | 179 188 189 | 3eqtr4rd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 1  +  ( 𝐺 ‘ 𝑘 ) )  −  ( 1  +  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) )  =  ( 3  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 191 | 121 122 60 60 61 | offn | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  Fn  ℕ ) | 
						
							| 192 | 17 | a1i | ⊢ ( ⊤  →  - 2  ∈  ℤ ) | 
						
							| 193 |  | fnconstg | ⊢ ( - 2  ∈  ℤ  →  ( ℕ  ×  { - 2 } )  Fn  ℕ ) | 
						
							| 194 | 192 193 | syl | ⊢ ( ⊤  →  ( ℕ  ×  { - 2 } )  Fn  ℕ ) | 
						
							| 195 | 194 122 60 60 61 | offn | ⊢ ( ⊤  →  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 )  Fn  ℕ ) | 
						
							| 196 | 121 195 60 60 61 | offn | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) )  Fn  ℕ ) | 
						
							| 197 | 60 48 122 151 | ofc1 | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 ) ‘ 𝑘 )  =  ( 1  +  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 198 | 60 71 122 151 | ofc1 | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ‘ 𝑘 )  =  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 199 | 60 48 195 198 | ofc1 | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ‘ 𝑘 )  =  ( 1  +  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 200 | 191 196 60 60 61 197 199 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) ‘ 𝑘 )  =  ( ( 1  +  ( 𝐺 ‘ 𝑘 ) )  −  ( 1  +  ( - 2  ·  ( 𝐺 ‘ 𝑘 ) ) ) ) ) | 
						
							| 201 | 60 141 122 151 | ofc1 | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 ) ‘ 𝑘 )  =  ( 3  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 202 | 190 200 201 | 3eqtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 ) ‘ 𝑘 ) ) | 
						
							| 203 | 161 163 60 60 61 164 202 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐻  ∘f   ·  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) ) ‘ 𝑘 )  =  ( ( 𝐻 ‘ 𝑘 )  ·  ( ( ( ℕ  ×  { 3 } )  ∘f   ·  𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 204 | 6 7 130 131 155 157 160 203 | climmul | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) )  ⇝  ( ( ( π ↑ 2 )  /  6 )  ·  0 ) ) | 
						
							| 205 | 100 | mul01i | ⊢ ( ( ( π ↑ 2 )  /  6 )  ·  0 )  =  0 | 
						
							| 206 | 204 205 | breqtrdi | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 )  ∘f   −  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) )  ⇝  0 ) | 
						
							| 207 | 99 206 | eqbrtrrd | ⊢ ( ⊤  →  ( 𝐾  ∘f   −  𝐽 )  ⇝  0 ) | 
						
							| 208 |  | ovexd | ⊢ ( ⊤  →  ( 𝐹  ∘f   −  𝐽 )  ∈  V ) | 
						
							| 209 | 31 65 90 60 60 61 | off | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 ) ) : ℕ ⟶ ℝ ) | 
						
							| 210 | 5 | feq1i | ⊢ ( 𝐾 : ℕ ⟶ ℝ  ↔  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  𝐺 ) ) : ℕ ⟶ ℝ ) | 
						
							| 211 | 209 210 | sylibr | ⊢ ( ⊤  →  𝐾 : ℕ ⟶ ℝ ) | 
						
							| 212 | 45 211 79 60 60 61 | off | ⊢ ( ⊤  →  ( 𝐾  ∘f   −  𝐽 ) : ℕ ⟶ ℝ ) | 
						
							| 213 | 212 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐾  ∘f   −  𝐽 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 214 | 45 27 79 60 60 61 | off | ⊢ ( ⊤  →  ( 𝐹  ∘f   −  𝐽 ) : ℕ ⟶ ℝ ) | 
						
							| 215 | 214 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹  ∘f   −  𝐽 ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 216 | 27 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 217 | 211 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐾 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 218 | 79 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐽 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 219 |  | eqid | ⊢ ( ( 2  ·  𝑘 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  1 ) | 
						
							| 220 | 1 2 3 4 5 219 | basellem8 | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝐽 ‘ 𝑘 )  ≤  ( 𝐹 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝐾 ‘ 𝑘 ) ) ) | 
						
							| 221 | 220 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐽 ‘ 𝑘 )  ≤  ( 𝐹 ‘ 𝑘 )  ∧  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝐾 ‘ 𝑘 ) ) ) | 
						
							| 222 | 221 | simprd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  ≤  ( 𝐾 ‘ 𝑘 ) ) | 
						
							| 223 | 216 217 218 222 | lesub1dd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐽 ‘ 𝑘 ) )  ≤  ( ( 𝐾 ‘ 𝑘 )  −  ( 𝐽 ‘ 𝑘 ) ) ) | 
						
							| 224 | 27 | ffnd | ⊢ ( ⊤  →  𝐹  Fn  ℕ ) | 
						
							| 225 | 79 | ffnd | ⊢ ( ⊤  →  𝐽  Fn  ℕ ) | 
						
							| 226 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 227 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐽 ‘ 𝑘 )  =  ( 𝐽 ‘ 𝑘 ) ) | 
						
							| 228 | 224 225 60 60 61 226 227 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹  ∘f   −  𝐽 ) ‘ 𝑘 )  =  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐽 ‘ 𝑘 ) ) ) | 
						
							| 229 | 211 | ffnd | ⊢ ( ⊤  →  𝐾  Fn  ℕ ) | 
						
							| 230 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐾 ‘ 𝑘 )  =  ( 𝐾 ‘ 𝑘 ) ) | 
						
							| 231 | 229 225 60 60 61 230 227 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐾  ∘f   −  𝐽 ) ‘ 𝑘 )  =  ( ( 𝐾 ‘ 𝑘 )  −  ( 𝐽 ‘ 𝑘 ) ) ) | 
						
							| 232 | 223 228 231 | 3brtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹  ∘f   −  𝐽 ) ‘ 𝑘 )  ≤  ( ( 𝐾  ∘f   −  𝐽 ) ‘ 𝑘 ) ) | 
						
							| 233 | 221 | simpld | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐽 ‘ 𝑘 )  ≤  ( 𝐹 ‘ 𝑘 ) ) | 
						
							| 234 | 216 218 | subge0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 0  ≤  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐽 ‘ 𝑘 ) )  ↔  ( 𝐽 ‘ 𝑘 )  ≤  ( 𝐹 ‘ 𝑘 ) ) ) | 
						
							| 235 | 233 234 | mpbird | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝐹 ‘ 𝑘 )  −  ( 𝐽 ‘ 𝑘 ) ) ) | 
						
							| 236 | 235 228 | breqtrrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( ( 𝐹  ∘f   −  𝐽 ) ‘ 𝑘 ) ) | 
						
							| 237 | 6 7 207 208 213 215 232 236 | climsqz2 | ⊢ ( ⊤  →  ( 𝐹  ∘f   −  𝐽 )  ⇝  0 ) | 
						
							| 238 |  | ovexd | ⊢ ( ⊤  →  ( ( 𝐹  ∘f   −  𝐽 )  ∘f   +  𝐽 )  ∈  V ) | 
						
							| 239 |  | ovexd | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) )  ∈  V ) | 
						
							| 240 | 70 | recni | ⊢ - 2  ∈  ℂ | 
						
							| 241 | 1 240 | basellem7 | ⊢ ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) )  ⇝  1 | 
						
							| 242 | 241 | a1i | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) )  ⇝  1 ) | 
						
							| 243 | 76 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 244 | 243 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 245 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ‘ 𝑘 ) ) | 
						
							| 246 | 161 196 60 60 61 164 245 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ) ‘ 𝑘 )  =  ( ( 𝐻 ‘ 𝑘 )  ·  ( ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) ‘ 𝑘 ) ) ) | 
						
							| 247 | 6 7 130 239 242 157 244 246 | climmul | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) )  ⇝  ( ( ( π ↑ 2 )  /  6 )  ·  1 ) ) | 
						
							| 248 | 247 128 | breqtrdi | ⊢ ( ⊤  →  ( 𝐻  ∘f   ·  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { - 2 } )  ∘f   ·  𝐺 ) ) )  ⇝  ( ( π ↑ 2 )  /  6 ) ) | 
						
							| 249 | 4 248 | eqbrtrid | ⊢ ( ⊤  →  𝐽  ⇝  ( ( π ↑ 2 )  /  6 ) ) | 
						
							| 250 | 215 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹  ∘f   −  𝐽 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 251 | 218 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐽 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 252 | 214 | ffnd | ⊢ ( ⊤  →  ( 𝐹  ∘f   −  𝐽 )  Fn  ℕ ) | 
						
							| 253 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹  ∘f   −  𝐽 ) ‘ 𝑘 )  =  ( ( 𝐹  ∘f   −  𝐽 ) ‘ 𝑘 ) ) | 
						
							| 254 | 252 225 60 60 61 253 227 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐹  ∘f   −  𝐽 )  ∘f   +  𝐽 ) ‘ 𝑘 )  =  ( ( ( 𝐹  ∘f   −  𝐽 ) ‘ 𝑘 )  +  ( 𝐽 ‘ 𝑘 ) ) ) | 
						
							| 255 | 6 7 237 238 249 250 251 254 | climadd | ⊢ ( ⊤  →  ( ( 𝐹  ∘f   −  𝐽 )  ∘f   +  𝐽 )  ⇝  ( 0  +  ( ( π ↑ 2 )  /  6 ) ) ) | 
						
							| 256 | 89 255 | eqbrtrrd | ⊢ ( ⊤  →  𝐹  ⇝  ( 0  +  ( ( π ↑ 2 )  /  6 ) ) ) | 
						
							| 257 | 100 | addlidi | ⊢ ( 0  +  ( ( π ↑ 2 )  /  6 ) )  =  ( ( π ↑ 2 )  /  6 ) | 
						
							| 258 | 256 2 257 | 3brtr3g | ⊢ ( ⊤  →  seq 1 (  +  ,  ( 𝑛  ∈  ℕ  ↦  ( 𝑛 ↑ - 2 ) ) )  ⇝  ( ( π ↑ 2 )  /  6 ) ) | 
						
							| 259 | 6 7 12 24 258 | isumclim | ⊢ ( ⊤  →  Σ 𝑘  ∈  ℕ ( 𝑘 ↑ - 2 )  =  ( ( π ↑ 2 )  /  6 ) ) | 
						
							| 260 | 259 | mptru | ⊢ Σ 𝑘  ∈  ℕ ( 𝑘 ↑ - 2 )  =  ( ( π ↑ 2 )  /  6 ) |