| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 2 |  | basellem7.2 | ⊢ 𝐴  ∈  ℂ | 
						
							| 3 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 4 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 5 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 6 | 3 | eqimss2i | ⊢ ( ℤ≥ ‘ 1 )  ⊆  ℕ | 
						
							| 7 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 8 | 6 7 | climconst2 | ⊢ ( ( 1  ∈  ℂ  ∧  1  ∈  ℤ )  →  ( ℕ  ×  { 1 } )  ⇝  1 ) | 
						
							| 9 | 5 4 8 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { 1 } )  ⇝  1 ) | 
						
							| 10 |  | ovexd | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) )  ∈  V ) | 
						
							| 11 | 6 7 | climconst2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℤ )  →  ( ℕ  ×  { 𝐴 } )  ⇝  𝐴 ) | 
						
							| 12 | 2 4 11 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { 𝐴 } )  ⇝  𝐴 ) | 
						
							| 13 |  | ovexd | ⊢ ( ⊤  →  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 )  ∈  V ) | 
						
							| 14 | 1 | basellem6 | ⊢ 𝐺  ⇝  0 | 
						
							| 15 | 14 | a1i | ⊢ ( ⊤  →  𝐺  ⇝  0 ) | 
						
							| 16 | 2 | elexi | ⊢ 𝐴  ∈  V | 
						
							| 17 | 16 | fconst | ⊢ ( ℕ  ×  { 𝐴 } ) : ℕ ⟶ { 𝐴 } | 
						
							| 18 | 2 | a1i | ⊢ ( ⊤  →  𝐴  ∈  ℂ ) | 
						
							| 19 | 18 | snssd | ⊢ ( ⊤  →  { 𝐴 }  ⊆  ℂ ) | 
						
							| 20 |  | fss | ⊢ ( ( ( ℕ  ×  { 𝐴 } ) : ℕ ⟶ { 𝐴 }  ∧  { 𝐴 }  ⊆  ℂ )  →  ( ℕ  ×  { 𝐴 } ) : ℕ ⟶ ℂ ) | 
						
							| 21 | 17 19 20 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { 𝐴 } ) : ℕ ⟶ ℂ ) | 
						
							| 22 | 21 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 𝐴 } ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 23 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 24 | 23 | a1i | ⊢ ( ⊤  →  2  ∈  ℕ ) | 
						
							| 25 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  ( 2  ·  𝑛 )  ∈  ℕ ) | 
						
							| 26 | 24 25 | sylan | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 2  ·  𝑛 )  ∈  ℕ ) | 
						
							| 27 | 26 | peano2nnd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ ) | 
						
							| 28 | 27 | nnrecred | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℝ ) | 
						
							| 29 | 28 | recnd | ⊢ ( ( ⊤  ∧  𝑛  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  ∈  ℂ ) | 
						
							| 30 | 29 1 | fmptd | ⊢ ( ⊤  →  𝐺 : ℕ ⟶ ℂ ) | 
						
							| 31 | 30 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 32 | 21 | ffnd | ⊢ ( ⊤  →  ( ℕ  ×  { 𝐴 } )  Fn  ℕ ) | 
						
							| 33 | 30 | ffnd | ⊢ ( ⊤  →  𝐺  Fn  ℕ ) | 
						
							| 34 | 7 | a1i | ⊢ ( ⊤  →  ℕ  ∈  V ) | 
						
							| 35 |  | inidm | ⊢ ( ℕ  ∩  ℕ )  =  ℕ | 
						
							| 36 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 𝐴 } ) ‘ 𝑘 )  =  ( ( ℕ  ×  { 𝐴 } ) ‘ 𝑘 ) ) | 
						
							| 37 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 38 | 32 33 34 34 35 36 37 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { 𝐴 } ) ‘ 𝑘 )  ·  ( 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 39 | 3 4 12 13 15 22 31 38 | climmul | ⊢ ( ⊤  →  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 )  ⇝  ( 𝐴  ·  0 ) ) | 
						
							| 40 | 2 | mul01i | ⊢ ( 𝐴  ·  0 )  =  0 | 
						
							| 41 | 39 40 | breqtrdi | ⊢ ( ⊤  →  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 )  ⇝  0 ) | 
						
							| 42 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 43 | 42 | fconst | ⊢ ( ℕ  ×  { 1 } ) : ℕ ⟶ { 1 } | 
						
							| 44 | 5 | a1i | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 45 | 44 | snssd | ⊢ ( ⊤  →  { 1 }  ⊆  ℂ ) | 
						
							| 46 |  | fss | ⊢ ( ( ( ℕ  ×  { 1 } ) : ℕ ⟶ { 1 }  ∧  { 1 }  ⊆  ℂ )  →  ( ℕ  ×  { 1 } ) : ℕ ⟶ ℂ ) | 
						
							| 47 | 43 45 46 | sylancr | ⊢ ( ⊤  →  ( ℕ  ×  { 1 } ) : ℕ ⟶ ℂ ) | 
						
							| 48 | 47 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 1 } ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 49 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 51 | 50 21 30 34 34 35 | off | ⊢ ( ⊤  →  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) : ℕ ⟶ ℂ ) | 
						
							| 52 | 51 | ffvelcdmda | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 53 | 43 | a1i | ⊢ ( ⊤  →  ( ℕ  ×  { 1 } ) : ℕ ⟶ { 1 } ) | 
						
							| 54 | 53 | ffnd | ⊢ ( ⊤  →  ( ℕ  ×  { 1 } )  Fn  ℕ ) | 
						
							| 55 | 51 | ffnd | ⊢ ( ⊤  →  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 )  Fn  ℕ ) | 
						
							| 56 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ℕ  ×  { 1 } ) ‘ 𝑘 )  =  ( ( ℕ  ×  { 1 } ) ‘ 𝑘 ) ) | 
						
							| 57 |  | eqidd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) ‘ 𝑘 ) ) | 
						
							| 58 | 54 55 34 34 35 56 57 | ofval | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) ) ‘ 𝑘 )  =  ( ( ( ℕ  ×  { 1 } ) ‘ 𝑘 )  +  ( ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 59 | 3 4 9 10 41 48 52 58 | climadd | ⊢ ( ⊤  →  ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) )  ⇝  ( 1  +  0 ) ) | 
						
							| 60 | 59 | mptru | ⊢ ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) )  ⇝  ( 1  +  0 ) | 
						
							| 61 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 62 | 60 61 | breqtri | ⊢ ( ( ℕ  ×  { 1 } )  ∘f   +  ( ( ℕ  ×  { 𝐴 } )  ∘f   ·  𝐺 ) )  ⇝  1 |