| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.g |  |-  G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 2 |  | basellem7.2 |  |-  A e. CC | 
						
							| 3 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 4 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 5 |  | ax-1cn |  |-  1 e. CC | 
						
							| 6 | 3 | eqimss2i |  |-  ( ZZ>= ` 1 ) C_ NN | 
						
							| 7 |  | nnex |  |-  NN e. _V | 
						
							| 8 | 6 7 | climconst2 |  |-  ( ( 1 e. CC /\ 1 e. ZZ ) -> ( NN X. { 1 } ) ~~> 1 ) | 
						
							| 9 | 5 4 8 | sylancr |  |-  ( T. -> ( NN X. { 1 } ) ~~> 1 ) | 
						
							| 10 |  | ovexd |  |-  ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) e. _V ) | 
						
							| 11 | 6 7 | climconst2 |  |-  ( ( A e. CC /\ 1 e. ZZ ) -> ( NN X. { A } ) ~~> A ) | 
						
							| 12 | 2 4 11 | sylancr |  |-  ( T. -> ( NN X. { A } ) ~~> A ) | 
						
							| 13 |  | ovexd |  |-  ( T. -> ( ( NN X. { A } ) oF x. G ) e. _V ) | 
						
							| 14 | 1 | basellem6 |  |-  G ~~> 0 | 
						
							| 15 | 14 | a1i |  |-  ( T. -> G ~~> 0 ) | 
						
							| 16 | 2 | elexi |  |-  A e. _V | 
						
							| 17 | 16 | fconst |  |-  ( NN X. { A } ) : NN --> { A } | 
						
							| 18 | 2 | a1i |  |-  ( T. -> A e. CC ) | 
						
							| 19 | 18 | snssd |  |-  ( T. -> { A } C_ CC ) | 
						
							| 20 |  | fss |  |-  ( ( ( NN X. { A } ) : NN --> { A } /\ { A } C_ CC ) -> ( NN X. { A } ) : NN --> CC ) | 
						
							| 21 | 17 19 20 | sylancr |  |-  ( T. -> ( NN X. { A } ) : NN --> CC ) | 
						
							| 22 | 21 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { A } ) ` k ) e. CC ) | 
						
							| 23 |  | 2nn |  |-  2 e. NN | 
						
							| 24 | 23 | a1i |  |-  ( T. -> 2 e. NN ) | 
						
							| 25 |  | nnmulcl |  |-  ( ( 2 e. NN /\ n e. NN ) -> ( 2 x. n ) e. NN ) | 
						
							| 26 | 24 25 | sylan |  |-  ( ( T. /\ n e. NN ) -> ( 2 x. n ) e. NN ) | 
						
							| 27 | 26 | peano2nnd |  |-  ( ( T. /\ n e. NN ) -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 28 | 27 | nnrecred |  |-  ( ( T. /\ n e. NN ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( ( T. /\ n e. NN ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. CC ) | 
						
							| 30 | 29 1 | fmptd |  |-  ( T. -> G : NN --> CC ) | 
						
							| 31 | 30 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) e. CC ) | 
						
							| 32 | 21 | ffnd |  |-  ( T. -> ( NN X. { A } ) Fn NN ) | 
						
							| 33 | 30 | ffnd |  |-  ( T. -> G Fn NN ) | 
						
							| 34 | 7 | a1i |  |-  ( T. -> NN e. _V ) | 
						
							| 35 |  | inidm |  |-  ( NN i^i NN ) = NN | 
						
							| 36 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { A } ) ` k ) = ( ( NN X. { A } ) ` k ) ) | 
						
							| 37 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) = ( G ` k ) ) | 
						
							| 38 | 32 33 34 34 35 36 37 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { A } ) oF x. G ) ` k ) = ( ( ( NN X. { A } ) ` k ) x. ( G ` k ) ) ) | 
						
							| 39 | 3 4 12 13 15 22 31 38 | climmul |  |-  ( T. -> ( ( NN X. { A } ) oF x. G ) ~~> ( A x. 0 ) ) | 
						
							| 40 | 2 | mul01i |  |-  ( A x. 0 ) = 0 | 
						
							| 41 | 39 40 | breqtrdi |  |-  ( T. -> ( ( NN X. { A } ) oF x. G ) ~~> 0 ) | 
						
							| 42 |  | 1ex |  |-  1 e. _V | 
						
							| 43 | 42 | fconst |  |-  ( NN X. { 1 } ) : NN --> { 1 } | 
						
							| 44 | 5 | a1i |  |-  ( T. -> 1 e. CC ) | 
						
							| 45 | 44 | snssd |  |-  ( T. -> { 1 } C_ CC ) | 
						
							| 46 |  | fss |  |-  ( ( ( NN X. { 1 } ) : NN --> { 1 } /\ { 1 } C_ CC ) -> ( NN X. { 1 } ) : NN --> CC ) | 
						
							| 47 | 43 45 46 | sylancr |  |-  ( T. -> ( NN X. { 1 } ) : NN --> CC ) | 
						
							| 48 | 47 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { 1 } ) ` k ) e. CC ) | 
						
							| 49 |  | mulcl |  |-  ( ( x e. CC /\ y e. CC ) -> ( x x. y ) e. CC ) | 
						
							| 50 | 49 | adantl |  |-  ( ( T. /\ ( x e. CC /\ y e. CC ) ) -> ( x x. y ) e. CC ) | 
						
							| 51 | 50 21 30 34 34 35 | off |  |-  ( T. -> ( ( NN X. { A } ) oF x. G ) : NN --> CC ) | 
						
							| 52 | 51 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { A } ) oF x. G ) ` k ) e. CC ) | 
						
							| 53 | 43 | a1i |  |-  ( T. -> ( NN X. { 1 } ) : NN --> { 1 } ) | 
						
							| 54 | 53 | ffnd |  |-  ( T. -> ( NN X. { 1 } ) Fn NN ) | 
						
							| 55 | 51 | ffnd |  |-  ( T. -> ( ( NN X. { A } ) oF x. G ) Fn NN ) | 
						
							| 56 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { 1 } ) ` k ) = ( ( NN X. { 1 } ) ` k ) ) | 
						
							| 57 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { A } ) oF x. G ) ` k ) = ( ( ( NN X. { A } ) oF x. G ) ` k ) ) | 
						
							| 58 | 54 55 34 34 35 56 57 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) ` k ) = ( ( ( NN X. { 1 } ) ` k ) + ( ( ( NN X. { A } ) oF x. G ) ` k ) ) ) | 
						
							| 59 | 3 4 9 10 41 48 52 58 | climadd |  |-  ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) ~~> ( 1 + 0 ) ) | 
						
							| 60 | 59 | mptru |  |-  ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) ~~> ( 1 + 0 ) | 
						
							| 61 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 62 | 60 61 | breqtri |  |-  ( ( NN X. { 1 } ) oF + ( ( NN X. { A } ) oF x. G ) ) ~~> 1 |