| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.g |  |-  G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 2 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 3 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 4 |  | ax-1cn |  |-  1 e. CC | 
						
							| 5 |  | divcnv |  |-  ( 1 e. CC -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) | 
						
							| 6 | 4 5 | mp1i |  |-  ( T. -> ( n e. NN |-> ( 1 / n ) ) ~~> 0 ) | 
						
							| 7 |  | nnex |  |-  NN e. _V | 
						
							| 8 | 7 | mptex |  |-  ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V | 
						
							| 9 | 1 8 | eqeltri |  |-  G e. _V | 
						
							| 10 | 9 | a1i |  |-  ( T. -> G e. _V ) | 
						
							| 11 |  | oveq2 |  |-  ( n = k -> ( 1 / n ) = ( 1 / k ) ) | 
						
							| 12 |  | eqid |  |-  ( n e. NN |-> ( 1 / n ) ) = ( n e. NN |-> ( 1 / n ) ) | 
						
							| 13 |  | ovex |  |-  ( 1 / k ) e. _V | 
						
							| 14 | 11 12 13 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) = ( 1 / k ) ) | 
						
							| 16 |  | nnrecre |  |-  ( k e. NN -> ( 1 / k ) e. RR ) | 
						
							| 17 | 16 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR ) | 
						
							| 18 | 15 17 | eqeltrd |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / n ) ) ` k ) e. RR ) | 
						
							| 19 |  | oveq2 |  |-  ( n = k -> ( 2 x. n ) = ( 2 x. k ) ) | 
						
							| 20 | 19 | oveq1d |  |-  ( n = k -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. k ) + 1 ) ) | 
						
							| 21 | 20 | oveq2d |  |-  ( n = k -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 22 |  | ovex |  |-  ( 1 / ( ( 2 x. k ) + 1 ) ) e. _V | 
						
							| 23 | 21 1 22 | fvmpt |  |-  ( k e. NN -> ( G ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 24 | 23 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) = ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 25 |  | 2nn |  |-  2 e. NN | 
						
							| 26 | 25 | a1i |  |-  ( T. -> 2 e. NN ) | 
						
							| 27 |  | nnmulcl |  |-  ( ( 2 e. NN /\ k e. NN ) -> ( 2 x. k ) e. NN ) | 
						
							| 28 | 26 27 | sylan |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. NN ) | 
						
							| 29 | 28 | peano2nnd |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. NN ) | 
						
							| 30 | 29 | nnrecred |  |-  ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR ) | 
						
							| 31 | 24 30 | eqeltrd |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) | 
						
							| 32 |  | nnre |  |-  ( k e. NN -> k e. RR ) | 
						
							| 33 | 32 | adantl |  |-  ( ( T. /\ k e. NN ) -> k e. RR ) | 
						
							| 34 | 28 | nnred |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) e. RR ) | 
						
							| 35 | 29 | nnred |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR ) | 
						
							| 36 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 37 | 36 | adantl |  |-  ( ( T. /\ k e. NN ) -> k e. NN0 ) | 
						
							| 38 |  | nn0addge1 |  |-  ( ( k e. RR /\ k e. NN0 ) -> k <_ ( k + k ) ) | 
						
							| 39 | 33 37 38 | syl2anc |  |-  ( ( T. /\ k e. NN ) -> k <_ ( k + k ) ) | 
						
							| 40 | 33 | recnd |  |-  ( ( T. /\ k e. NN ) -> k e. CC ) | 
						
							| 41 | 40 | 2timesd |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) = ( k + k ) ) | 
						
							| 42 | 39 41 | breqtrrd |  |-  ( ( T. /\ k e. NN ) -> k <_ ( 2 x. k ) ) | 
						
							| 43 | 34 | lep1d |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. k ) <_ ( ( 2 x. k ) + 1 ) ) | 
						
							| 44 | 33 34 35 42 43 | letrd |  |-  ( ( T. /\ k e. NN ) -> k <_ ( ( 2 x. k ) + 1 ) ) | 
						
							| 45 |  | nngt0 |  |-  ( k e. NN -> 0 < k ) | 
						
							| 46 | 45 | adantl |  |-  ( ( T. /\ k e. NN ) -> 0 < k ) | 
						
							| 47 | 29 | nngt0d |  |-  ( ( T. /\ k e. NN ) -> 0 < ( ( 2 x. k ) + 1 ) ) | 
						
							| 48 |  | lerec |  |-  ( ( ( k e. RR /\ 0 < k ) /\ ( ( ( 2 x. k ) + 1 ) e. RR /\ 0 < ( ( 2 x. k ) + 1 ) ) ) -> ( k <_ ( ( 2 x. k ) + 1 ) <-> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) ) | 
						
							| 49 | 33 46 35 47 48 | syl22anc |  |-  ( ( T. /\ k e. NN ) -> ( k <_ ( ( 2 x. k ) + 1 ) <-> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) ) | 
						
							| 50 | 44 49 | mpbid |  |-  ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) <_ ( 1 / k ) ) | 
						
							| 51 | 50 24 15 | 3brtr4d |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( ( n e. NN |-> ( 1 / n ) ) ` k ) ) | 
						
							| 52 | 29 | nnrpd |  |-  ( ( T. /\ k e. NN ) -> ( ( 2 x. k ) + 1 ) e. RR+ ) | 
						
							| 53 | 52 | rpreccld |  |-  ( ( T. /\ k e. NN ) -> ( 1 / ( ( 2 x. k ) + 1 ) ) e. RR+ ) | 
						
							| 54 | 53 | rpge0d |  |-  ( ( T. /\ k e. NN ) -> 0 <_ ( 1 / ( ( 2 x. k ) + 1 ) ) ) | 
						
							| 55 | 54 24 | breqtrrd |  |-  ( ( T. /\ k e. NN ) -> 0 <_ ( G ` k ) ) | 
						
							| 56 | 2 3 6 10 18 31 51 55 | climsqz2 |  |-  ( T. -> G ~~> 0 ) | 
						
							| 57 | 56 | mptru |  |-  G ~~> 0 |