| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.g | ⊢ 𝐺  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 2 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 3 |  | 1zzd | ⊢ ( ⊤  →  1  ∈  ℤ ) | 
						
							| 4 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 5 |  | divcnv | ⊢ ( 1  ∈  ℂ  →  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) )  ⇝  0 ) | 
						
							| 6 | 4 5 | mp1i | ⊢ ( ⊤  →  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) )  ⇝  0 ) | 
						
							| 7 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 8 | 7 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) ) )  ∈  V | 
						
							| 9 | 1 8 | eqeltri | ⊢ 𝐺  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( ⊤  →  𝐺  ∈  V ) | 
						
							| 11 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 1  /  𝑛 )  =  ( 1  /  𝑘 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) | 
						
							| 13 |  | ovex | ⊢ ( 1  /  𝑘 )  ∈  V | 
						
							| 14 | 11 12 13 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 )  =  ( 1  /  𝑘 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 )  =  ( 1  /  𝑘 ) ) | 
						
							| 16 |  | nnrecre | ⊢ ( 𝑘  ∈  ℕ  →  ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  /  𝑘 )  ∈  ℝ ) | 
						
							| 18 | 15 17 | eqeltrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑘 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑛  =  𝑘  →  ( ( 2  ·  𝑛 )  +  1 )  =  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑛  =  𝑘  →  ( 1  /  ( ( 2  ·  𝑛 )  +  1 ) )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 22 |  | ovex | ⊢ ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  V | 
						
							| 23 | 21 1 22 | fvmpt | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝐺 ‘ 𝑘 )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  =  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 25 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 26 | 25 | a1i | ⊢ ( ⊤  →  2  ∈  ℕ ) | 
						
							| 27 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℕ ) | 
						
							| 28 | 26 27 | sylan | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℕ ) | 
						
							| 29 | 28 | peano2nnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℕ ) | 
						
							| 30 | 29 | nnrecred | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ ) | 
						
							| 31 | 24 30 | eqeltrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ∈  ℝ ) | 
						
							| 32 |  | nnre | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℝ ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℝ ) | 
						
							| 34 | 28 | nnred | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ∈  ℝ ) | 
						
							| 35 | 29 | nnred | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ ) | 
						
							| 36 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 38 |  | nn0addge1 | ⊢ ( ( 𝑘  ∈  ℝ  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ≤  ( 𝑘  +  𝑘 ) ) | 
						
							| 39 | 33 37 38 | syl2anc | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ≤  ( 𝑘  +  𝑘 ) ) | 
						
							| 40 | 33 | recnd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 41 | 40 | 2timesd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  =  ( 𝑘  +  𝑘 ) ) | 
						
							| 42 | 39 41 | breqtrrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ≤  ( 2  ·  𝑘 ) ) | 
						
							| 43 | 34 | lep1d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 2  ·  𝑘 )  ≤  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 44 | 33 34 35 42 43 | letrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  𝑘  ≤  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 45 |  | nngt0 | ⊢ ( 𝑘  ∈  ℕ  →  0  <  𝑘 ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  <  𝑘 ) | 
						
							| 47 | 29 | nngt0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  <  ( ( 2  ·  𝑘 )  +  1 ) ) | 
						
							| 48 |  | lerec | ⊢ ( ( ( 𝑘  ∈  ℝ  ∧  0  <  𝑘 )  ∧  ( ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ  ∧  0  <  ( ( 2  ·  𝑘 )  +  1 ) ) )  →  ( 𝑘  ≤  ( ( 2  ·  𝑘 )  +  1 )  ↔  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ≤  ( 1  /  𝑘 ) ) ) | 
						
							| 49 | 33 46 35 47 48 | syl22anc | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  ≤  ( ( 2  ·  𝑘 )  +  1 )  ↔  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ≤  ( 1  /  𝑘 ) ) ) | 
						
							| 50 | 44 49 | mpbid | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ≤  ( 1  /  𝑘 ) ) | 
						
							| 51 | 50 24 15 | 3brtr4d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 𝐺 ‘ 𝑘 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( 1  /  𝑛 ) ) ‘ 𝑘 ) ) | 
						
							| 52 | 29 | nnrpd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( ( 2  ·  𝑘 )  +  1 )  ∈  ℝ+ ) | 
						
							| 53 | 52 | rpreccld | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) )  ∈  ℝ+ ) | 
						
							| 54 | 53 | rpge0d | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( 1  /  ( ( 2  ·  𝑘 )  +  1 ) ) ) | 
						
							| 55 | 54 24 | breqtrrd | ⊢ ( ( ⊤  ∧  𝑘  ∈  ℕ )  →  0  ≤  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 56 | 2 3 6 10 18 31 51 55 | climsqz2 | ⊢ ( ⊤  →  𝐺  ⇝  0 ) | 
						
							| 57 | 56 | mptru | ⊢ 𝐺  ⇝  0 |