| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.g |  |-  G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 2 |  | basel.f |  |-  F = seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) | 
						
							| 3 |  | basel.h |  |-  H = ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) | 
						
							| 4 |  | basel.j |  |-  J = ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) | 
						
							| 5 |  | basel.k |  |-  K = ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) | 
						
							| 6 |  | basellem8.n |  |-  N = ( ( 2 x. M ) + 1 ) | 
						
							| 7 |  | fzfid |  |-  ( M e. NN -> ( 1 ... M ) e. Fin ) | 
						
							| 8 |  | pire |  |-  _pi e. RR | 
						
							| 9 |  | 2nn |  |-  2 e. NN | 
						
							| 10 |  | nnmulcl |  |-  ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) | 
						
							| 11 | 9 10 | mpan |  |-  ( M e. NN -> ( 2 x. M ) e. NN ) | 
						
							| 12 | 11 | peano2nnd |  |-  ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) | 
						
							| 13 | 6 12 | eqeltrid |  |-  ( M e. NN -> N e. NN ) | 
						
							| 14 |  | nndivre |  |-  ( ( _pi e. RR /\ N e. NN ) -> ( _pi / N ) e. RR ) | 
						
							| 15 | 8 13 14 | sylancr |  |-  ( M e. NN -> ( _pi / N ) e. RR ) | 
						
							| 16 | 15 | resqcld |  |-  ( M e. NN -> ( ( _pi / N ) ^ 2 ) e. RR ) | 
						
							| 17 | 16 | adantr |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( _pi / N ) ^ 2 ) e. RR ) | 
						
							| 18 | 6 | basellem1 |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) | 
						
							| 19 |  | tanrpcl |  |-  ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ ) | 
						
							| 21 | 20 | rpred |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. RR ) | 
						
							| 22 | 20 | rpne0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) =/= 0 ) | 
						
							| 23 |  | 2z |  |-  2 e. ZZ | 
						
							| 24 |  | znegcl |  |-  ( 2 e. ZZ -> -u 2 e. ZZ ) | 
						
							| 25 | 23 24 | ax-mp |  |-  -u 2 e. ZZ | 
						
							| 26 | 25 | a1i |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> -u 2 e. ZZ ) | 
						
							| 27 | 21 22 26 | reexpclzd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. RR ) | 
						
							| 28 | 17 27 | remulcld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) e. RR ) | 
						
							| 29 |  | elfznn |  |-  ( k e. ( 1 ... M ) -> k e. NN ) | 
						
							| 30 | 29 | adantl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k e. NN ) | 
						
							| 31 | 30 | nnred |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k e. RR ) | 
						
							| 32 | 30 | nnne0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k =/= 0 ) | 
						
							| 33 | 31 32 26 | reexpclzd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) e. RR ) | 
						
							| 34 | 21 | recnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) e. CC ) | 
						
							| 35 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 36 |  | expneg |  |-  ( ( ( tan ` ( ( k x. _pi ) / N ) ) e. CC /\ 2 e. NN0 ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 37 | 34 35 36 | sylancl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) | 
						
							| 39 | 15 | recnd |  |-  ( M e. NN -> ( _pi / N ) e. CC ) | 
						
							| 40 | 39 | sqcld |  |-  ( M e. NN -> ( ( _pi / N ) ^ 2 ) e. CC ) | 
						
							| 41 | 40 | adantr |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( _pi / N ) ^ 2 ) e. CC ) | 
						
							| 42 |  | rpexpcl |  |-  ( ( ( tan ` ( ( k x. _pi ) / N ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) | 
						
							| 43 | 20 23 42 | sylancl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) | 
						
							| 44 | 43 | rpred |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR ) | 
						
							| 45 | 44 | recnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. CC ) | 
						
							| 46 | 43 | rpne0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 ) | 
						
							| 47 | 41 45 46 | divrecd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) | 
						
							| 48 | 38 47 | eqtr4d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 49 | 30 | nnrpd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k e. RR+ ) | 
						
							| 50 |  | rpexpcl |  |-  ( ( k e. RR+ /\ -u 2 e. ZZ ) -> ( k ^ -u 2 ) e. RR+ ) | 
						
							| 51 | 49 25 50 | sylancl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) e. RR+ ) | 
						
							| 52 | 30 | nncnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> k e. CC ) | 
						
							| 53 | 52 32 26 | expnegd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u -u 2 ) = ( 1 / ( k ^ -u 2 ) ) ) | 
						
							| 54 |  | 2cn |  |-  2 e. CC | 
						
							| 55 | 54 | negnegi |  |-  -u -u 2 = 2 | 
						
							| 56 | 55 | oveq2i |  |-  ( k ^ -u -u 2 ) = ( k ^ 2 ) | 
						
							| 57 | 53 56 | eqtr3di |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 / ( k ^ -u 2 ) ) = ( k ^ 2 ) ) | 
						
							| 58 | 57 | oveq1d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( 1 / ( k ^ -u 2 ) ) x. ( ( _pi / N ) ^ 2 ) ) = ( ( k ^ 2 ) x. ( ( _pi / N ) ^ 2 ) ) ) | 
						
							| 59 |  | nncn |  |-  ( k e. NN -> k e. CC ) | 
						
							| 60 |  | nnne0 |  |-  ( k e. NN -> k =/= 0 ) | 
						
							| 61 | 25 | a1i |  |-  ( k e. NN -> -u 2 e. ZZ ) | 
						
							| 62 | 59 60 61 | expclzd |  |-  ( k e. NN -> ( k ^ -u 2 ) e. CC ) | 
						
							| 63 | 30 62 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) e. CC ) | 
						
							| 64 | 52 32 26 | expne0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) =/= 0 ) | 
						
							| 65 | 41 63 64 | divrec2d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) = ( ( 1 / ( k ^ -u 2 ) ) x. ( ( _pi / N ) ^ 2 ) ) ) | 
						
							| 66 | 8 | recni |  |-  _pi e. CC | 
						
							| 67 | 66 | a1i |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> _pi e. CC ) | 
						
							| 68 | 13 | nncnd |  |-  ( M e. NN -> N e. CC ) | 
						
							| 69 | 13 | nnne0d |  |-  ( M e. NN -> N =/= 0 ) | 
						
							| 70 | 68 69 | jca |  |-  ( M e. NN -> ( N e. CC /\ N =/= 0 ) ) | 
						
							| 71 | 70 | adantr |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( N e. CC /\ N =/= 0 ) ) | 
						
							| 72 |  | divass |  |-  ( ( k e. CC /\ _pi e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( k x. _pi ) / N ) = ( k x. ( _pi / N ) ) ) | 
						
							| 73 | 52 67 71 72 | syl3anc |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) = ( k x. ( _pi / N ) ) ) | 
						
							| 74 | 73 | oveq1d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) = ( ( k x. ( _pi / N ) ) ^ 2 ) ) | 
						
							| 75 | 39 | adantr |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( _pi / N ) e. CC ) | 
						
							| 76 | 52 75 | sqmuld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. ( _pi / N ) ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( _pi / N ) ^ 2 ) ) ) | 
						
							| 77 | 74 76 | eqtrd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) = ( ( k ^ 2 ) x. ( ( _pi / N ) ^ 2 ) ) ) | 
						
							| 78 | 58 65 77 | 3eqtr4d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) = ( ( ( k x. _pi ) / N ) ^ 2 ) ) | 
						
							| 79 |  | elioore |  |-  ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( ( k x. _pi ) / N ) e. RR ) | 
						
							| 80 | 18 79 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. RR ) | 
						
							| 81 | 80 | resqcld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) e. RR ) | 
						
							| 82 |  | tangtx |  |-  ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( ( k x. _pi ) / N ) < ( tan ` ( ( k x. _pi ) / N ) ) ) | 
						
							| 83 | 18 82 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) < ( tan ` ( ( k x. _pi ) / N ) ) ) | 
						
							| 84 |  | eliooord |  |-  ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( ( k x. _pi ) / N ) /\ ( ( k x. _pi ) / N ) < ( _pi / 2 ) ) ) | 
						
							| 85 | 18 84 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 0 < ( ( k x. _pi ) / N ) /\ ( ( k x. _pi ) / N ) < ( _pi / 2 ) ) ) | 
						
							| 86 | 85 | simpld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 < ( ( k x. _pi ) / N ) ) | 
						
							| 87 | 80 86 | elrpd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. RR+ ) | 
						
							| 88 | 87 | rpge0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 <_ ( ( k x. _pi ) / N ) ) | 
						
							| 89 | 20 | rpge0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 <_ ( tan ` ( ( k x. _pi ) / N ) ) ) | 
						
							| 90 | 80 21 88 89 | lt2sqd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) < ( tan ` ( ( k x. _pi ) / N ) ) <-> ( ( ( k x. _pi ) / N ) ^ 2 ) < ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 91 | 83 90 | mpbid |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) < ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) | 
						
							| 92 | 81 44 91 | ltled |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k x. _pi ) / N ) ^ 2 ) <_ ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) | 
						
							| 93 | 78 92 | eqbrtrd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) <_ ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) | 
						
							| 94 | 17 51 43 93 | lediv23d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) <_ ( k ^ -u 2 ) ) | 
						
							| 95 | 48 94 | eqbrtrd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) <_ ( k ^ -u 2 ) ) | 
						
							| 96 | 7 28 33 95 | fsumle |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) <_ sum_ k e. ( 1 ... M ) ( k ^ -u 2 ) ) | 
						
							| 97 |  | oveq2 |  |-  ( n = M -> ( 2 x. n ) = ( 2 x. M ) ) | 
						
							| 98 | 97 | oveq1d |  |-  ( n = M -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. M ) + 1 ) ) | 
						
							| 99 | 98 6 | eqtr4di |  |-  ( n = M -> ( ( 2 x. n ) + 1 ) = N ) | 
						
							| 100 | 99 | oveq2d |  |-  ( n = M -> ( 1 / ( ( 2 x. n ) + 1 ) ) = ( 1 / N ) ) | 
						
							| 101 | 100 | oveq2d |  |-  ( n = M -> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( 1 - ( 1 / N ) ) ) | 
						
							| 102 | 101 | oveq2d |  |-  ( n = M -> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) ) | 
						
							| 103 | 100 | oveq2d |  |-  ( n = M -> ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( -u 2 x. ( 1 / N ) ) ) | 
						
							| 104 | 103 | oveq2d |  |-  ( n = M -> ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) | 
						
							| 105 | 102 104 | oveq12d |  |-  ( n = M -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) ) | 
						
							| 106 |  | nnex |  |-  NN e. _V | 
						
							| 107 | 106 | a1i |  |-  ( T. -> NN e. _V ) | 
						
							| 108 |  | ovexd |  |-  ( ( T. /\ n e. NN ) -> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) e. _V ) | 
						
							| 109 |  | ovexd |  |-  ( ( T. /\ n e. NN ) -> ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) e. _V ) | 
						
							| 110 | 8 | resqcli |  |-  ( _pi ^ 2 ) e. RR | 
						
							| 111 |  | 6re |  |-  6 e. RR | 
						
							| 112 |  | 6nn |  |-  6 e. NN | 
						
							| 113 | 112 | nnne0i |  |-  6 =/= 0 | 
						
							| 114 | 110 111 113 | redivcli |  |-  ( ( _pi ^ 2 ) / 6 ) e. RR | 
						
							| 115 | 114 | a1i |  |-  ( ( T. /\ n e. NN ) -> ( ( _pi ^ 2 ) / 6 ) e. RR ) | 
						
							| 116 |  | ovexd |  |-  ( ( T. /\ n e. NN ) -> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V ) | 
						
							| 117 |  | fconstmpt |  |-  ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) = ( n e. NN |-> ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 118 | 117 | a1i |  |-  ( T. -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) = ( n e. NN |-> ( ( _pi ^ 2 ) / 6 ) ) ) | 
						
							| 119 |  | 1zzd |  |-  ( ( T. /\ n e. NN ) -> 1 e. ZZ ) | 
						
							| 120 |  | ovexd |  |-  ( ( T. /\ n e. NN ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. _V ) | 
						
							| 121 |  | fconstmpt |  |-  ( NN X. { 1 } ) = ( n e. NN |-> 1 ) | 
						
							| 122 | 121 | a1i |  |-  ( T. -> ( NN X. { 1 } ) = ( n e. NN |-> 1 ) ) | 
						
							| 123 | 1 | a1i |  |-  ( T. -> G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) | 
						
							| 124 | 107 119 120 122 123 | offval2 |  |-  ( T. -> ( ( NN X. { 1 } ) oF - G ) = ( n e. NN |-> ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 125 | 107 115 116 118 124 | offval2 |  |-  ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) = ( n e. NN |-> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 126 | 3 125 | eqtrid |  |-  ( T. -> H = ( n e. NN |-> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 127 |  | ovexd |  |-  ( ( T. /\ n e. NN ) -> ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V ) | 
						
							| 128 | 54 | negcli |  |-  -u 2 e. CC | 
						
							| 129 | 128 | a1i |  |-  ( ( T. /\ n e. NN ) -> -u 2 e. CC ) | 
						
							| 130 |  | fconstmpt |  |-  ( NN X. { -u 2 } ) = ( n e. NN |-> -u 2 ) | 
						
							| 131 | 130 | a1i |  |-  ( T. -> ( NN X. { -u 2 } ) = ( n e. NN |-> -u 2 ) ) | 
						
							| 132 | 107 129 120 131 123 | offval2 |  |-  ( T. -> ( ( NN X. { -u 2 } ) oF x. G ) = ( n e. NN |-> ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 133 | 107 119 127 122 132 | offval2 |  |-  ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) = ( n e. NN |-> ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 134 | 107 108 109 126 133 | offval2 |  |-  ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) ) | 
						
							| 135 | 134 | mptru |  |-  ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 136 | 4 135 | eqtri |  |-  J = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( -u 2 x. ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 137 |  | ovex |  |-  ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) e. _V | 
						
							| 138 | 105 136 137 | fvmpt |  |-  ( M e. NN -> ( J ` M ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) ) | 
						
							| 139 | 114 | recni |  |-  ( ( _pi ^ 2 ) / 6 ) e. CC | 
						
							| 140 | 139 | a1i |  |-  ( M e. NN -> ( ( _pi ^ 2 ) / 6 ) e. CC ) | 
						
							| 141 | 11 | nncnd |  |-  ( M e. NN -> ( 2 x. M ) e. CC ) | 
						
							| 142 | 141 68 69 | divcld |  |-  ( M e. NN -> ( ( 2 x. M ) / N ) e. CC ) | 
						
							| 143 |  | ax-1cn |  |-  1 e. CC | 
						
							| 144 |  | subcl |  |-  ( ( ( 2 x. M ) e. CC /\ 1 e. CC ) -> ( ( 2 x. M ) - 1 ) e. CC ) | 
						
							| 145 | 141 143 144 | sylancl |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) e. CC ) | 
						
							| 146 | 145 68 69 | divcld |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) / N ) e. CC ) | 
						
							| 147 | 140 142 146 | mulassd |  |-  ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) ) ) | 
						
							| 148 |  | 1cnd |  |-  ( M e. NN -> 1 e. CC ) | 
						
							| 149 | 68 148 68 69 | divsubdird |  |-  ( M e. NN -> ( ( N - 1 ) / N ) = ( ( N / N ) - ( 1 / N ) ) ) | 
						
							| 150 | 6 | oveq1i |  |-  ( N - 1 ) = ( ( ( 2 x. M ) + 1 ) - 1 ) | 
						
							| 151 |  | pncan |  |-  ( ( ( 2 x. M ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. M ) + 1 ) - 1 ) = ( 2 x. M ) ) | 
						
							| 152 | 141 143 151 | sylancl |  |-  ( M e. NN -> ( ( ( 2 x. M ) + 1 ) - 1 ) = ( 2 x. M ) ) | 
						
							| 153 | 150 152 | eqtrid |  |-  ( M e. NN -> ( N - 1 ) = ( 2 x. M ) ) | 
						
							| 154 | 153 | oveq1d |  |-  ( M e. NN -> ( ( N - 1 ) / N ) = ( ( 2 x. M ) / N ) ) | 
						
							| 155 | 68 69 | dividd |  |-  ( M e. NN -> ( N / N ) = 1 ) | 
						
							| 156 | 155 | oveq1d |  |-  ( M e. NN -> ( ( N / N ) - ( 1 / N ) ) = ( 1 - ( 1 / N ) ) ) | 
						
							| 157 | 149 154 156 | 3eqtr3rd |  |-  ( M e. NN -> ( 1 - ( 1 / N ) ) = ( ( 2 x. M ) / N ) ) | 
						
							| 158 | 157 | oveq2d |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) ) | 
						
							| 159 | 128 | a1i |  |-  ( M e. NN -> -u 2 e. CC ) | 
						
							| 160 | 68 159 68 69 | divdird |  |-  ( M e. NN -> ( ( N + -u 2 ) / N ) = ( ( N / N ) + ( -u 2 / N ) ) ) | 
						
							| 161 |  | negsub |  |-  ( ( N e. CC /\ 2 e. CC ) -> ( N + -u 2 ) = ( N - 2 ) ) | 
						
							| 162 | 68 54 161 | sylancl |  |-  ( M e. NN -> ( N + -u 2 ) = ( N - 2 ) ) | 
						
							| 163 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 164 | 6 163 | oveq12i |  |-  ( N - 2 ) = ( ( ( 2 x. M ) + 1 ) - ( 1 + 1 ) ) | 
						
							| 165 | 141 148 148 | pnpcan2d |  |-  ( M e. NN -> ( ( ( 2 x. M ) + 1 ) - ( 1 + 1 ) ) = ( ( 2 x. M ) - 1 ) ) | 
						
							| 166 | 164 165 | eqtrid |  |-  ( M e. NN -> ( N - 2 ) = ( ( 2 x. M ) - 1 ) ) | 
						
							| 167 | 162 166 | eqtrd |  |-  ( M e. NN -> ( N + -u 2 ) = ( ( 2 x. M ) - 1 ) ) | 
						
							| 168 | 167 | oveq1d |  |-  ( M e. NN -> ( ( N + -u 2 ) / N ) = ( ( ( 2 x. M ) - 1 ) / N ) ) | 
						
							| 169 | 159 68 69 | divrecd |  |-  ( M e. NN -> ( -u 2 / N ) = ( -u 2 x. ( 1 / N ) ) ) | 
						
							| 170 | 155 169 | oveq12d |  |-  ( M e. NN -> ( ( N / N ) + ( -u 2 / N ) ) = ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) | 
						
							| 171 | 160 168 170 | 3eqtr3rd |  |-  ( M e. NN -> ( 1 + ( -u 2 x. ( 1 / N ) ) ) = ( ( ( 2 x. M ) - 1 ) / N ) ) | 
						
							| 172 | 158 171 | oveq12d |  |-  ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) ) | 
						
							| 173 | 13 | nnsqcld |  |-  ( M e. NN -> ( N ^ 2 ) e. NN ) | 
						
							| 174 | 173 | nncnd |  |-  ( M e. NN -> ( N ^ 2 ) e. CC ) | 
						
							| 175 |  | 6cn |  |-  6 e. CC | 
						
							| 176 |  | mulcom |  |-  ( ( ( N ^ 2 ) e. CC /\ 6 e. CC ) -> ( ( N ^ 2 ) x. 6 ) = ( 6 x. ( N ^ 2 ) ) ) | 
						
							| 177 | 174 175 176 | sylancl |  |-  ( M e. NN -> ( ( N ^ 2 ) x. 6 ) = ( 6 x. ( N ^ 2 ) ) ) | 
						
							| 178 | 177 | oveq2d |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) | 
						
							| 179 | 110 | recni |  |-  ( _pi ^ 2 ) e. CC | 
						
							| 180 | 179 | a1i |  |-  ( M e. NN -> ( _pi ^ 2 ) e. CC ) | 
						
							| 181 | 141 145 | mulcld |  |-  ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) | 
						
							| 182 | 173 | nnne0d |  |-  ( M e. NN -> ( N ^ 2 ) =/= 0 ) | 
						
							| 183 | 174 182 | jca |  |-  ( M e. NN -> ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) ) | 
						
							| 184 | 175 113 | pm3.2i |  |-  ( 6 e. CC /\ 6 =/= 0 ) | 
						
							| 185 | 184 | a1i |  |-  ( M e. NN -> ( 6 e. CC /\ 6 =/= 0 ) ) | 
						
							| 186 |  | divmuldiv |  |-  ( ( ( ( _pi ^ 2 ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) /\ ( ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) /\ ( 6 e. CC /\ 6 =/= 0 ) ) ) -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) ) | 
						
							| 187 | 180 181 183 185 186 | syl22anc |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) ) | 
						
							| 188 |  | divmuldiv |  |-  ( ( ( ( _pi ^ 2 ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) /\ ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) ) ) -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) | 
						
							| 189 | 180 181 185 183 188 | syl22anc |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) | 
						
							| 190 | 178 187 189 | 3eqtr4d |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) ) | 
						
							| 191 | 66 | a1i |  |-  ( M e. NN -> _pi e. CC ) | 
						
							| 192 | 191 68 69 | sqdivd |  |-  ( M e. NN -> ( ( _pi / N ) ^ 2 ) = ( ( _pi ^ 2 ) / ( N ^ 2 ) ) ) | 
						
							| 193 | 192 | oveq1d |  |-  ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) ) | 
						
							| 194 | 141 68 145 68 69 69 | divmuldivd |  |-  ( M e. NN -> ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N x. N ) ) ) | 
						
							| 195 | 68 | sqvald |  |-  ( M e. NN -> ( N ^ 2 ) = ( N x. N ) ) | 
						
							| 196 | 195 | oveq2d |  |-  ( M e. NN -> ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N x. N ) ) ) | 
						
							| 197 | 194 196 | eqtr4d |  |-  ( M e. NN -> ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) | 
						
							| 198 | 197 | oveq2d |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / ( N ^ 2 ) ) ) ) | 
						
							| 199 | 190 193 198 | 3eqtr4d |  |-  ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( ( 2 x. M ) - 1 ) / N ) ) ) ) | 
						
							| 200 | 147 172 199 | 3eqtr4d |  |-  ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) ) | 
						
							| 201 |  | eqid |  |-  ( x e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( x ^ j ) ) ) = ( x e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( x ^ j ) ) ) | 
						
							| 202 |  | eqid |  |-  ( n e. ( 1 ... M ) |-> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) = ( n e. ( 1 ... M ) |-> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) | 
						
							| 203 | 6 201 202 | basellem5 |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) | 
						
							| 204 | 203 | oveq2d |  |-  ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) ) | 
						
							| 205 | 200 204 | eqtr4d |  |-  ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( -u 2 x. ( 1 / N ) ) ) ) = ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 206 | 27 | recnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. CC ) | 
						
							| 207 | 7 40 206 | fsummulc2 |  |-  ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 208 | 138 205 207 | 3eqtrd |  |-  ( M e. NN -> ( J ` M ) = sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 209 | 2 | fveq1i |  |-  ( F ` M ) = ( seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) ` M ) | 
						
							| 210 |  | oveq1 |  |-  ( n = k -> ( n ^ -u 2 ) = ( k ^ -u 2 ) ) | 
						
							| 211 |  | eqid |  |-  ( n e. NN |-> ( n ^ -u 2 ) ) = ( n e. NN |-> ( n ^ -u 2 ) ) | 
						
							| 212 |  | ovex |  |-  ( k ^ -u 2 ) e. _V | 
						
							| 213 | 210 211 212 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) = ( k ^ -u 2 ) ) | 
						
							| 214 | 30 213 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) = ( k ^ -u 2 ) ) | 
						
							| 215 |  | id |  |-  ( M e. NN -> M e. NN ) | 
						
							| 216 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 217 | 215 216 | eleqtrdi |  |-  ( M e. NN -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 218 | 214 217 63 | fsumser |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( k ^ -u 2 ) = ( seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) ` M ) ) | 
						
							| 219 | 209 218 | eqtr4id |  |-  ( M e. NN -> ( F ` M ) = sum_ k e. ( 1 ... M ) ( k ^ -u 2 ) ) | 
						
							| 220 | 96 208 219 | 3brtr4d |  |-  ( M e. NN -> ( J ` M ) <_ ( F ` M ) ) | 
						
							| 221 | 80 | resincld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) e. RR ) | 
						
							| 222 |  | sincosq1sgn |  |-  ( ( ( k x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` ( ( k x. _pi ) / N ) ) /\ 0 < ( cos ` ( ( k x. _pi ) / N ) ) ) ) | 
						
							| 223 | 18 222 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 0 < ( sin ` ( ( k x. _pi ) / N ) ) /\ 0 < ( cos ` ( ( k x. _pi ) / N ) ) ) ) | 
						
							| 224 | 223 | simpld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 < ( sin ` ( ( k x. _pi ) / N ) ) ) | 
						
							| 225 | 224 | gt0ne0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) =/= 0 ) | 
						
							| 226 | 221 225 26 | reexpclzd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. RR ) | 
						
							| 227 | 17 226 | remulcld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) e. RR ) | 
						
							| 228 |  | sinltx |  |-  ( ( ( k x. _pi ) / N ) e. RR+ -> ( sin ` ( ( k x. _pi ) / N ) ) < ( ( k x. _pi ) / N ) ) | 
						
							| 229 | 87 228 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) < ( ( k x. _pi ) / N ) ) | 
						
							| 230 | 221 80 229 | ltled |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) <_ ( ( k x. _pi ) / N ) ) | 
						
							| 231 |  | 0re |  |-  0 e. RR | 
						
							| 232 |  | ltle |  |-  ( ( 0 e. RR /\ ( sin ` ( ( k x. _pi ) / N ) ) e. RR ) -> ( 0 < ( sin ` ( ( k x. _pi ) / N ) ) -> 0 <_ ( sin ` ( ( k x. _pi ) / N ) ) ) ) | 
						
							| 233 | 231 221 232 | sylancr |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 0 < ( sin ` ( ( k x. _pi ) / N ) ) -> 0 <_ ( sin ` ( ( k x. _pi ) / N ) ) ) ) | 
						
							| 234 | 224 233 | mpd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 <_ ( sin ` ( ( k x. _pi ) / N ) ) ) | 
						
							| 235 | 221 80 234 88 | le2sqd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) <_ ( ( k x. _pi ) / N ) <-> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( k x. _pi ) / N ) ^ 2 ) ) ) | 
						
							| 236 | 230 235 | mpbid |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( k x. _pi ) / N ) ^ 2 ) ) | 
						
							| 237 | 236 78 | breqtrrd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) ) | 
						
							| 238 | 221 | resqcld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR ) | 
						
							| 239 | 238 17 51 | lemuldiv2d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k ^ -u 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) <_ ( ( _pi / N ) ^ 2 ) <-> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) ) ) | 
						
							| 240 | 221 224 | elrpd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) e. RR+ ) | 
						
							| 241 |  | rpexpcl |  |-  ( ( ( sin ` ( ( k x. _pi ) / N ) ) e. RR+ /\ 2 e. ZZ ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) | 
						
							| 242 | 240 23 241 | sylancl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. RR+ ) | 
						
							| 243 | 33 17 242 | lemuldivd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( k ^ -u 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) <_ ( ( _pi / N ) ^ 2 ) <-> ( k ^ -u 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) | 
						
							| 244 | 239 243 | bitr3d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( k ^ -u 2 ) ) <-> ( k ^ -u 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) | 
						
							| 245 | 237 244 | mpbid |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) <_ ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 246 | 221 | recnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( sin ` ( ( k x. _pi ) / N ) ) e. CC ) | 
						
							| 247 |  | expneg |  |-  ( ( ( sin ` ( ( k x. _pi ) / N ) ) e. CC /\ 2 e. NN0 ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 248 | 246 35 247 | sylancl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 249 | 248 | oveq2d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) | 
						
							| 250 | 238 | recnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. CC ) | 
						
							| 251 | 242 | rpne0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 ) | 
						
							| 252 | 41 250 251 | divrecd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( ( ( _pi / N ) ^ 2 ) x. ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) | 
						
							| 253 | 249 252 | eqtr4d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi / N ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 254 | 245 253 | breqtrrd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( k ^ -u 2 ) <_ ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 255 | 7 33 227 254 | fsumle |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( k ^ -u 2 ) <_ sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 256 | 100 | oveq2d |  |-  ( n = M -> ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) = ( 1 + ( 1 / N ) ) ) | 
						
							| 257 | 102 256 | oveq12d |  |-  ( n = M -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) ) | 
						
							| 258 |  | ovexd |  |-  ( ( T. /\ n e. NN ) -> ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) e. _V ) | 
						
							| 259 | 107 119 120 122 123 | offval2 |  |-  ( T. -> ( ( NN X. { 1 } ) oF + G ) = ( n e. NN |-> ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 260 | 107 108 258 126 259 | offval2 |  |-  ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) ) | 
						
							| 261 | 260 | mptru |  |-  ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 262 | 5 261 | eqtri |  |-  K = ( n e. NN |-> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) x. ( 1 + ( 1 / ( ( 2 x. n ) + 1 ) ) ) ) ) | 
						
							| 263 |  | ovex |  |-  ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) e. _V | 
						
							| 264 | 257 262 263 | fvmpt |  |-  ( M e. NN -> ( K ` M ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) ) | 
						
							| 265 |  | peano2cn |  |-  ( N e. CC -> ( N + 1 ) e. CC ) | 
						
							| 266 | 68 265 | syl |  |-  ( M e. NN -> ( N + 1 ) e. CC ) | 
						
							| 267 | 266 68 69 | divcld |  |-  ( M e. NN -> ( ( N + 1 ) / N ) e. CC ) | 
						
							| 268 | 140 142 267 | mulassd |  |-  ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) x. ( ( N + 1 ) / N ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) ) ) | 
						
							| 269 | 68 148 68 69 | divdird |  |-  ( M e. NN -> ( ( N + 1 ) / N ) = ( ( N / N ) + ( 1 / N ) ) ) | 
						
							| 270 | 155 | oveq1d |  |-  ( M e. NN -> ( ( N / N ) + ( 1 / N ) ) = ( 1 + ( 1 / N ) ) ) | 
						
							| 271 | 269 270 | eqtr2d |  |-  ( M e. NN -> ( 1 + ( 1 / N ) ) = ( ( N + 1 ) / N ) ) | 
						
							| 272 | 158 271 | oveq12d |  |-  ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) = ( ( ( ( _pi ^ 2 ) / 6 ) x. ( ( 2 x. M ) / N ) ) x. ( ( N + 1 ) / N ) ) ) | 
						
							| 273 | 177 | oveq2d |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) | 
						
							| 274 | 141 266 | mulcld |  |-  ( M e. NN -> ( ( 2 x. M ) x. ( N + 1 ) ) e. CC ) | 
						
							| 275 |  | divmuldiv |  |-  ( ( ( ( _pi ^ 2 ) e. CC /\ ( ( 2 x. M ) x. ( N + 1 ) ) e. CC ) /\ ( ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) /\ ( 6 e. CC /\ 6 =/= 0 ) ) ) -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) ) | 
						
							| 276 | 180 274 183 185 275 | syl22anc |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( ( N ^ 2 ) x. 6 ) ) ) | 
						
							| 277 |  | divmuldiv |  |-  ( ( ( ( _pi ^ 2 ) e. CC /\ ( ( 2 x. M ) x. ( N + 1 ) ) e. CC ) /\ ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( ( N ^ 2 ) e. CC /\ ( N ^ 2 ) =/= 0 ) ) ) -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) | 
						
							| 278 | 180 274 185 183 277 | syl22anc |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) = ( ( ( _pi ^ 2 ) x. ( ( 2 x. M ) x. ( N + 1 ) ) ) / ( 6 x. ( N ^ 2 ) ) ) ) | 
						
							| 279 | 273 276 278 | 3eqtr4d |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) ) | 
						
							| 280 | 80 | recoscld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( cos ` ( ( k x. _pi ) / N ) ) e. RR ) | 
						
							| 281 | 280 | recnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( cos ` ( ( k x. _pi ) / N ) ) e. CC ) | 
						
							| 282 | 281 | sqcld |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) e. CC ) | 
						
							| 283 | 250 282 250 251 | divdird |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) + ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) + ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) | 
						
							| 284 | 80 | recnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( k x. _pi ) / N ) e. CC ) | 
						
							| 285 |  | sincossq |  |-  ( ( ( k x. _pi ) / N ) e. CC -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) + ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = 1 ) | 
						
							| 286 | 284 285 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) + ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = 1 ) | 
						
							| 287 | 286 | oveq1d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) + ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 288 | 250 251 | dividd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = 1 ) | 
						
							| 289 | 223 | simprd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 0 < ( cos ` ( ( k x. _pi ) / N ) ) ) | 
						
							| 290 | 289 | gt0ne0d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( cos ` ( ( k x. _pi ) / N ) ) =/= 0 ) | 
						
							| 291 |  | tanval |  |-  ( ( ( ( k x. _pi ) / N ) e. CC /\ ( cos ` ( ( k x. _pi ) / N ) ) =/= 0 ) -> ( tan ` ( ( k x. _pi ) / N ) ) = ( ( sin ` ( ( k x. _pi ) / N ) ) / ( cos ` ( ( k x. _pi ) / N ) ) ) ) | 
						
							| 292 | 284 290 291 | syl2anc |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( tan ` ( ( k x. _pi ) / N ) ) = ( ( sin ` ( ( k x. _pi ) / N ) ) / ( cos ` ( ( k x. _pi ) / N ) ) ) ) | 
						
							| 293 | 292 | oveq1d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) = ( ( ( sin ` ( ( k x. _pi ) / N ) ) / ( cos ` ( ( k x. _pi ) / N ) ) ) ^ 2 ) ) | 
						
							| 294 | 246 281 290 | sqdivd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( sin ` ( ( k x. _pi ) / N ) ) / ( cos ` ( ( k x. _pi ) / N ) ) ) ^ 2 ) = ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 295 | 293 294 | eqtrd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) = ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 296 | 295 | oveq2d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 / ( ( tan ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( 1 / ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) ) | 
						
							| 297 |  | sqne0 |  |-  ( ( cos ` ( ( k x. _pi ) / N ) ) e. CC -> ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 <-> ( cos ` ( ( k x. _pi ) / N ) ) =/= 0 ) ) | 
						
							| 298 | 281 297 | syl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 <-> ( cos ` ( ( k x. _pi ) / N ) ) =/= 0 ) ) | 
						
							| 299 | 290 298 | mpbird |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) =/= 0 ) | 
						
							| 300 | 250 282 251 299 | recdivd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 / ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) = ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) | 
						
							| 301 | 37 296 300 | 3eqtrrd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) | 
						
							| 302 | 288 301 | oveq12d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) + ( ( ( cos ` ( ( k x. _pi ) / N ) ) ^ 2 ) / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) ) = ( 1 + ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 303 | 283 287 302 | 3eqtr3d |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 / ( ( sin ` ( ( k x. _pi ) / N ) ) ^ 2 ) ) = ( 1 + ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 304 |  | addcom |  |-  ( ( 1 e. CC /\ ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. CC ) -> ( 1 + ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) ) | 
						
							| 305 | 143 206 304 | sylancr |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( 1 + ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) ) | 
						
							| 306 | 248 303 305 | 3eqtrd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) ) | 
						
							| 307 | 306 | sumeq2dv |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = sum_ k e. ( 1 ... M ) ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) ) | 
						
							| 308 |  | 1cnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> 1 e. CC ) | 
						
							| 309 | 7 206 308 | fsumadd |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + 1 ) = ( sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + sum_ k e. ( 1 ... M ) 1 ) ) | 
						
							| 310 |  | fsumconst |  |-  ( ( ( 1 ... M ) e. Fin /\ 1 e. CC ) -> sum_ k e. ( 1 ... M ) 1 = ( ( # ` ( 1 ... M ) ) x. 1 ) ) | 
						
							| 311 | 7 143 310 | sylancl |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) 1 = ( ( # ` ( 1 ... M ) ) x. 1 ) ) | 
						
							| 312 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 313 |  | hashfz1 |  |-  ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) | 
						
							| 314 | 312 313 | syl |  |-  ( M e. NN -> ( # ` ( 1 ... M ) ) = M ) | 
						
							| 315 | 314 | oveq1d |  |-  ( M e. NN -> ( ( # ` ( 1 ... M ) ) x. 1 ) = ( M x. 1 ) ) | 
						
							| 316 |  | nncn |  |-  ( M e. NN -> M e. CC ) | 
						
							| 317 | 316 | mulridd |  |-  ( M e. NN -> ( M x. 1 ) = M ) | 
						
							| 318 | 311 315 317 | 3eqtrd |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) 1 = M ) | 
						
							| 319 | 203 318 | oveq12d |  |-  ( M e. NN -> ( sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) + sum_ k e. ( 1 ... M ) 1 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + M ) ) | 
						
							| 320 | 307 309 319 | 3eqtrd |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + M ) ) | 
						
							| 321 |  | 3cn |  |-  3 e. CC | 
						
							| 322 | 321 | a1i |  |-  ( M e. NN -> 3 e. CC ) | 
						
							| 323 | 141 145 322 | adddid |  |-  ( M e. NN -> ( ( 2 x. M ) x. ( ( ( 2 x. M ) - 1 ) + 3 ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( ( 2 x. M ) x. 3 ) ) ) | 
						
							| 324 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 325 | 324 | oveq1i |  |-  ( 3 - 1 ) = ( ( 2 + 1 ) - 1 ) | 
						
							| 326 | 54 143 | pncan3oi |  |-  ( ( 2 + 1 ) - 1 ) = 2 | 
						
							| 327 | 325 326 163 | 3eqtri |  |-  ( 3 - 1 ) = ( 1 + 1 ) | 
						
							| 328 | 327 | oveq2i |  |-  ( ( 2 x. M ) + ( 3 - 1 ) ) = ( ( 2 x. M ) + ( 1 + 1 ) ) | 
						
							| 329 | 141 148 322 | subadd23d |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) + 3 ) = ( ( 2 x. M ) + ( 3 - 1 ) ) ) | 
						
							| 330 | 141 148 148 | addassd |  |-  ( M e. NN -> ( ( ( 2 x. M ) + 1 ) + 1 ) = ( ( 2 x. M ) + ( 1 + 1 ) ) ) | 
						
							| 331 | 328 329 330 | 3eqtr4a |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) + 3 ) = ( ( ( 2 x. M ) + 1 ) + 1 ) ) | 
						
							| 332 | 6 | oveq1i |  |-  ( N + 1 ) = ( ( ( 2 x. M ) + 1 ) + 1 ) | 
						
							| 333 | 331 332 | eqtr4di |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) + 3 ) = ( N + 1 ) ) | 
						
							| 334 | 333 | oveq2d |  |-  ( M e. NN -> ( ( 2 x. M ) x. ( ( ( 2 x. M ) - 1 ) + 3 ) ) = ( ( 2 x. M ) x. ( N + 1 ) ) ) | 
						
							| 335 |  | 2cnd |  |-  ( M e. NN -> 2 e. CC ) | 
						
							| 336 | 335 316 322 | mul32d |  |-  ( M e. NN -> ( ( 2 x. M ) x. 3 ) = ( ( 2 x. 3 ) x. M ) ) | 
						
							| 337 |  | 3t2e6 |  |-  ( 3 x. 2 ) = 6 | 
						
							| 338 | 321 54 | mulcomi |  |-  ( 3 x. 2 ) = ( 2 x. 3 ) | 
						
							| 339 | 337 338 | eqtr3i |  |-  6 = ( 2 x. 3 ) | 
						
							| 340 | 339 | oveq1i |  |-  ( 6 x. M ) = ( ( 2 x. 3 ) x. M ) | 
						
							| 341 | 336 340 | eqtr4di |  |-  ( M e. NN -> ( ( 2 x. M ) x. 3 ) = ( 6 x. M ) ) | 
						
							| 342 | 341 | oveq2d |  |-  ( M e. NN -> ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( ( 2 x. M ) x. 3 ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( 6 x. M ) ) ) | 
						
							| 343 | 323 334 342 | 3eqtr3d |  |-  ( M e. NN -> ( ( 2 x. M ) x. ( N + 1 ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( 6 x. M ) ) ) | 
						
							| 344 | 343 | oveq1d |  |-  ( M e. NN -> ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( 6 x. M ) ) / 6 ) ) | 
						
							| 345 |  | mulcl |  |-  ( ( 6 e. CC /\ M e. CC ) -> ( 6 x. M ) e. CC ) | 
						
							| 346 | 175 316 345 | sylancr |  |-  ( M e. NN -> ( 6 x. M ) e. CC ) | 
						
							| 347 | 175 | a1i |  |-  ( M e. NN -> 6 e. CC ) | 
						
							| 348 | 113 | a1i |  |-  ( M e. NN -> 6 =/= 0 ) | 
						
							| 349 | 181 346 347 348 | divdird |  |-  ( M e. NN -> ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) + ( 6 x. M ) ) / 6 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + ( ( 6 x. M ) / 6 ) ) ) | 
						
							| 350 | 316 347 348 | divcan3d |  |-  ( M e. NN -> ( ( 6 x. M ) / 6 ) = M ) | 
						
							| 351 | 350 | oveq2d |  |-  ( M e. NN -> ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + ( ( 6 x. M ) / 6 ) ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + M ) ) | 
						
							| 352 | 344 349 351 | 3eqtrd |  |-  ( M e. NN -> ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) = ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) + M ) ) | 
						
							| 353 | 320 352 | eqtr4d |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) | 
						
							| 354 | 192 353 | oveq12d |  |-  ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi ^ 2 ) / ( N ^ 2 ) ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / 6 ) ) ) | 
						
							| 355 | 141 68 266 68 69 69 | divmuldivd |  |-  ( M e. NN -> ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) = ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N x. N ) ) ) | 
						
							| 356 | 195 | oveq2d |  |-  ( M e. NN -> ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) = ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N x. N ) ) ) | 
						
							| 357 | 355 356 | eqtr4d |  |-  ( M e. NN -> ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) = ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) | 
						
							| 358 | 357 | oveq2d |  |-  ( M e. NN -> ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) x. ( N + 1 ) ) / ( N ^ 2 ) ) ) ) | 
						
							| 359 | 279 354 358 | 3eqtr4d |  |-  ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = ( ( ( _pi ^ 2 ) / 6 ) x. ( ( ( 2 x. M ) / N ) x. ( ( N + 1 ) / N ) ) ) ) | 
						
							| 360 | 268 272 359 | 3eqtr4d |  |-  ( M e. NN -> ( ( ( ( _pi ^ 2 ) / 6 ) x. ( 1 - ( 1 / N ) ) ) x. ( 1 + ( 1 / N ) ) ) = ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 361 | 226 | recnd |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. CC ) | 
						
							| 362 | 7 40 361 | fsummulc2 |  |-  ( M e. NN -> ( ( ( _pi / N ) ^ 2 ) x. sum_ k e. ( 1 ... M ) ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) = sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 363 | 264 360 362 | 3eqtrd |  |-  ( M e. NN -> ( K ` M ) = sum_ k e. ( 1 ... M ) ( ( ( _pi / N ) ^ 2 ) x. ( ( sin ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) ) | 
						
							| 364 | 255 219 363 | 3brtr4d |  |-  ( M e. NN -> ( F ` M ) <_ ( K ` M ) ) | 
						
							| 365 | 220 364 | jca |  |-  ( M e. NN -> ( ( J ` M ) <_ ( F ` M ) /\ ( F ` M ) <_ ( K ` M ) ) ) |