| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
|- 0 e. RR* |
| 2 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 3 |
2
|
rexri |
|- ( _pi / 2 ) e. RR* |
| 4 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) ) |
| 5 |
1 3 4
|
mp2an |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) <-> ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) ) |
| 6 |
|
sincosq1lem |
|- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( sin ` A ) ) |
| 7 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) |
| 8 |
2 7
|
mpan |
|- ( A e. RR -> ( ( _pi / 2 ) - A ) e. RR ) |
| 9 |
|
sincosq1lem |
|- ( ( ( ( _pi / 2 ) - A ) e. RR /\ 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 10 |
8 9
|
syl3an1 |
|- ( ( A e. RR /\ 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 11 |
10
|
3expib |
|- ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) -> 0 < ( sin ` ( ( _pi / 2 ) - A ) ) ) ) |
| 12 |
|
0re |
|- 0 e. RR |
| 13 |
|
ltsub13 |
|- ( ( 0 e. RR /\ ( _pi / 2 ) e. RR /\ A e. RR ) -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( ( _pi / 2 ) - 0 ) ) ) |
| 14 |
12 2 13
|
mp3an12 |
|- ( A e. RR -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( ( _pi / 2 ) - 0 ) ) ) |
| 15 |
2
|
recni |
|- ( _pi / 2 ) e. CC |
| 16 |
15
|
subid1i |
|- ( ( _pi / 2 ) - 0 ) = ( _pi / 2 ) |
| 17 |
16
|
breq2i |
|- ( A < ( ( _pi / 2 ) - 0 ) <-> A < ( _pi / 2 ) ) |
| 18 |
14 17
|
bitrdi |
|- ( A e. RR -> ( 0 < ( ( _pi / 2 ) - A ) <-> A < ( _pi / 2 ) ) ) |
| 19 |
|
ltsub23 |
|- ( ( ( _pi / 2 ) e. RR /\ A e. RR /\ ( _pi / 2 ) e. RR ) -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> ( ( _pi / 2 ) - ( _pi / 2 ) ) < A ) ) |
| 20 |
2 2 19
|
mp3an13 |
|- ( A e. RR -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> ( ( _pi / 2 ) - ( _pi / 2 ) ) < A ) ) |
| 21 |
15
|
subidi |
|- ( ( _pi / 2 ) - ( _pi / 2 ) ) = 0 |
| 22 |
21
|
breq1i |
|- ( ( ( _pi / 2 ) - ( _pi / 2 ) ) < A <-> 0 < A ) |
| 23 |
20 22
|
bitrdi |
|- ( A e. RR -> ( ( ( _pi / 2 ) - A ) < ( _pi / 2 ) <-> 0 < A ) ) |
| 24 |
18 23
|
anbi12d |
|- ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) <-> ( A < ( _pi / 2 ) /\ 0 < A ) ) ) |
| 25 |
24
|
biancomd |
|- ( A e. RR -> ( ( 0 < ( ( _pi / 2 ) - A ) /\ ( ( _pi / 2 ) - A ) < ( _pi / 2 ) ) <-> ( 0 < A /\ A < ( _pi / 2 ) ) ) ) |
| 26 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 27 |
|
sinhalfpim |
|- ( A e. CC -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
| 28 |
26 27
|
syl |
|- ( A e. RR -> ( sin ` ( ( _pi / 2 ) - A ) ) = ( cos ` A ) ) |
| 29 |
28
|
breq2d |
|- ( A e. RR -> ( 0 < ( sin ` ( ( _pi / 2 ) - A ) ) <-> 0 < ( cos ` A ) ) ) |
| 30 |
11 25 29
|
3imtr3d |
|- ( A e. RR -> ( ( 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) ) |
| 31 |
30
|
3impib |
|- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) |
| 32 |
6 31
|
jca |
|- ( ( A e. RR /\ 0 < A /\ A < ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
| 33 |
5 32
|
sylbi |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |