Step |
Hyp |
Ref |
Expression |
1 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
2 |
|
pire |
|- _pi e. RR |
3 |
|
rexr |
|- ( ( _pi / 2 ) e. RR -> ( _pi / 2 ) e. RR* ) |
4 |
|
rexr |
|- ( _pi e. RR -> _pi e. RR* ) |
5 |
|
elioo2 |
|- ( ( ( _pi / 2 ) e. RR* /\ _pi e. RR* ) -> ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) ) |
6 |
3 4 5
|
syl2an |
|- ( ( ( _pi / 2 ) e. RR /\ _pi e. RR ) -> ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) ) |
7 |
1 2 6
|
mp2an |
|- ( A e. ( ( _pi / 2 ) (,) _pi ) <-> ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) ) |
8 |
|
resubcl |
|- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A - ( _pi / 2 ) ) e. RR ) |
9 |
1 8
|
mpan2 |
|- ( A e. RR -> ( A - ( _pi / 2 ) ) e. RR ) |
10 |
|
0xr |
|- 0 e. RR* |
11 |
1
|
rexri |
|- ( _pi / 2 ) e. RR* |
12 |
|
elioo2 |
|- ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( A - ( _pi / 2 ) ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) ) ) |
13 |
10 11 12
|
mp2an |
|- ( ( A - ( _pi / 2 ) ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( A - ( _pi / 2 ) ) e. RR /\ 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) ) |
14 |
|
sincosq1sgn |
|- ( ( A - ( _pi / 2 ) ) e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) |
15 |
13 14
|
sylbir |
|- ( ( ( A - ( _pi / 2 ) ) e. RR /\ 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) |
16 |
9 15
|
syl3an1 |
|- ( ( A e. RR /\ 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) |
17 |
16
|
3expib |
|- ( A e. RR -> ( ( 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) ) |
18 |
|
0re |
|- 0 e. RR |
19 |
|
ltsub13 |
|- ( ( 0 e. RR /\ A e. RR /\ ( _pi / 2 ) e. RR ) -> ( 0 < ( A - ( _pi / 2 ) ) <-> ( _pi / 2 ) < ( A - 0 ) ) ) |
20 |
18 1 19
|
mp3an13 |
|- ( A e. RR -> ( 0 < ( A - ( _pi / 2 ) ) <-> ( _pi / 2 ) < ( A - 0 ) ) ) |
21 |
|
recn |
|- ( A e. RR -> A e. CC ) |
22 |
21
|
subid1d |
|- ( A e. RR -> ( A - 0 ) = A ) |
23 |
22
|
breq2d |
|- ( A e. RR -> ( ( _pi / 2 ) < ( A - 0 ) <-> ( _pi / 2 ) < A ) ) |
24 |
20 23
|
bitrd |
|- ( A e. RR -> ( 0 < ( A - ( _pi / 2 ) ) <-> ( _pi / 2 ) < A ) ) |
25 |
|
ltsubadd |
|- ( ( A e. RR /\ ( _pi / 2 ) e. RR /\ ( _pi / 2 ) e. RR ) -> ( ( A - ( _pi / 2 ) ) < ( _pi / 2 ) <-> A < ( ( _pi / 2 ) + ( _pi / 2 ) ) ) ) |
26 |
1 1 25
|
mp3an23 |
|- ( A e. RR -> ( ( A - ( _pi / 2 ) ) < ( _pi / 2 ) <-> A < ( ( _pi / 2 ) + ( _pi / 2 ) ) ) ) |
27 |
|
pidiv2halves |
|- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
28 |
27
|
breq2i |
|- ( A < ( ( _pi / 2 ) + ( _pi / 2 ) ) <-> A < _pi ) |
29 |
26 28
|
bitrdi |
|- ( A e. RR -> ( ( A - ( _pi / 2 ) ) < ( _pi / 2 ) <-> A < _pi ) ) |
30 |
24 29
|
anbi12d |
|- ( A e. RR -> ( ( 0 < ( A - ( _pi / 2 ) ) /\ ( A - ( _pi / 2 ) ) < ( _pi / 2 ) ) <-> ( ( _pi / 2 ) < A /\ A < _pi ) ) ) |
31 |
9
|
resincld |
|- ( A e. RR -> ( sin ` ( A - ( _pi / 2 ) ) ) e. RR ) |
32 |
31
|
lt0neg2d |
|- ( A e. RR -> ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) <-> -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
33 |
32
|
anbi1d |
|- ( A e. RR -> ( ( 0 < ( sin ` ( A - ( _pi / 2 ) ) ) /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) <-> ( -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) ) |
34 |
17 30 33
|
3imtr3d |
|- ( A e. RR -> ( ( ( _pi / 2 ) < A /\ A < _pi ) -> ( -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) ) |
35 |
1
|
recni |
|- ( _pi / 2 ) e. CC |
36 |
|
pncan3 |
|- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
37 |
35 21 36
|
sylancr |
|- ( A e. RR -> ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) = A ) |
38 |
37
|
fveq2d |
|- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` A ) ) |
39 |
9
|
recnd |
|- ( A e. RR -> ( A - ( _pi / 2 ) ) e. CC ) |
40 |
|
coshalfpip |
|- ( ( A - ( _pi / 2 ) ) e. CC -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
41 |
39 40
|
syl |
|- ( A e. RR -> ( cos ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
42 |
38 41
|
eqtr3d |
|- ( A e. RR -> ( cos ` A ) = -u ( sin ` ( A - ( _pi / 2 ) ) ) ) |
43 |
42
|
breq1d |
|- ( A e. RR -> ( ( cos ` A ) < 0 <-> -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 ) ) |
44 |
37
|
fveq2d |
|- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( sin ` A ) ) |
45 |
|
sinhalfpip |
|- ( ( A - ( _pi / 2 ) ) e. CC -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
46 |
39 45
|
syl |
|- ( A e. RR -> ( sin ` ( ( _pi / 2 ) + ( A - ( _pi / 2 ) ) ) ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
47 |
44 46
|
eqtr3d |
|- ( A e. RR -> ( sin ` A ) = ( cos ` ( A - ( _pi / 2 ) ) ) ) |
48 |
47
|
breq2d |
|- ( A e. RR -> ( 0 < ( sin ` A ) <-> 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) |
49 |
43 48
|
anbi12d |
|- ( A e. RR -> ( ( ( cos ` A ) < 0 /\ 0 < ( sin ` A ) ) <-> ( -u ( sin ` ( A - ( _pi / 2 ) ) ) < 0 /\ 0 < ( cos ` ( A - ( _pi / 2 ) ) ) ) ) ) |
50 |
34 49
|
sylibrd |
|- ( A e. RR -> ( ( ( _pi / 2 ) < A /\ A < _pi ) -> ( ( cos ` A ) < 0 /\ 0 < ( sin ` A ) ) ) ) |
51 |
50
|
3impib |
|- ( ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) -> ( ( cos ` A ) < 0 /\ 0 < ( sin ` A ) ) ) |
52 |
51
|
ancomd |
|- ( ( A e. RR /\ ( _pi / 2 ) < A /\ A < _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |
53 |
7 52
|
sylbi |
|- ( A e. ( ( _pi / 2 ) (,) _pi ) -> ( 0 < ( sin ` A ) /\ ( cos ` A ) < 0 ) ) |