| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.n |  |-  N = ( ( 2 x. M ) + 1 ) | 
						
							| 2 |  | elfznn |  |-  ( K e. ( 1 ... M ) -> K e. NN ) | 
						
							| 3 | 2 | nnrpd |  |-  ( K e. ( 1 ... M ) -> K e. RR+ ) | 
						
							| 4 |  | pirp |  |-  _pi e. RR+ | 
						
							| 5 |  | rpmulcl |  |-  ( ( K e. RR+ /\ _pi e. RR+ ) -> ( K x. _pi ) e. RR+ ) | 
						
							| 6 | 3 4 5 | sylancl |  |-  ( K e. ( 1 ... M ) -> ( K x. _pi ) e. RR+ ) | 
						
							| 7 |  | 2nn |  |-  2 e. NN | 
						
							| 8 |  | nnmulcl |  |-  ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) | 
						
							| 9 | 7 8 | mpan |  |-  ( M e. NN -> ( 2 x. M ) e. NN ) | 
						
							| 10 | 9 | peano2nnd |  |-  ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) | 
						
							| 11 | 1 10 | eqeltrid |  |-  ( M e. NN -> N e. NN ) | 
						
							| 12 | 11 | nnrpd |  |-  ( M e. NN -> N e. RR+ ) | 
						
							| 13 |  | rpdivcl |  |-  ( ( ( K x. _pi ) e. RR+ /\ N e. RR+ ) -> ( ( K x. _pi ) / N ) e. RR+ ) | 
						
							| 14 | 6 12 13 | syl2anr |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) e. RR+ ) | 
						
							| 15 | 14 | rpred |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) e. RR ) | 
						
							| 16 | 14 | rpgt0d |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> 0 < ( ( K x. _pi ) / N ) ) | 
						
							| 17 | 2 | adantl |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K e. NN ) | 
						
							| 18 |  | nnmulcl |  |-  ( ( K e. NN /\ 2 e. NN ) -> ( K x. 2 ) e. NN ) | 
						
							| 19 | 17 7 18 | sylancl |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) e. NN ) | 
						
							| 20 | 19 | nnred |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) e. RR ) | 
						
							| 21 | 9 | adantr |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 x. M ) e. NN ) | 
						
							| 22 | 21 | nnred |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 x. M ) e. RR ) | 
						
							| 23 | 11 | adantr |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> N e. NN ) | 
						
							| 24 | 23 | nnred |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> N e. RR ) | 
						
							| 25 | 1 24 | eqeltrrid |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( 2 x. M ) + 1 ) e. RR ) | 
						
							| 26 | 17 | nncnd |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K e. CC ) | 
						
							| 27 |  | 2cn |  |-  2 e. CC | 
						
							| 28 |  | mulcom |  |-  ( ( K e. CC /\ 2 e. CC ) -> ( K x. 2 ) = ( 2 x. K ) ) | 
						
							| 29 | 26 27 28 | sylancl |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) = ( 2 x. K ) ) | 
						
							| 30 |  | elfzle2 |  |-  ( K e. ( 1 ... M ) -> K <_ M ) | 
						
							| 31 | 30 | adantl |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K <_ M ) | 
						
							| 32 | 17 | nnred |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K e. RR ) | 
						
							| 33 |  | nnre |  |-  ( M e. NN -> M e. RR ) | 
						
							| 34 | 33 | adantr |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> M e. RR ) | 
						
							| 35 |  | 2re |  |-  2 e. RR | 
						
							| 36 |  | 2pos |  |-  0 < 2 | 
						
							| 37 | 35 36 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 38 | 37 | a1i |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 39 |  | lemul2 |  |-  ( ( K e. RR /\ M e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( K <_ M <-> ( 2 x. K ) <_ ( 2 x. M ) ) ) | 
						
							| 40 | 32 34 38 39 | syl3anc |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K <_ M <-> ( 2 x. K ) <_ ( 2 x. M ) ) ) | 
						
							| 41 | 31 40 | mpbid |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 x. K ) <_ ( 2 x. M ) ) | 
						
							| 42 | 29 41 | eqbrtrd |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) <_ ( 2 x. M ) ) | 
						
							| 43 | 22 | ltp1d |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 x. M ) < ( ( 2 x. M ) + 1 ) ) | 
						
							| 44 | 20 22 25 42 43 | lelttrd |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) < ( ( 2 x. M ) + 1 ) ) | 
						
							| 45 | 44 1 | breqtrrdi |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. 2 ) < N ) | 
						
							| 46 | 19 | nngt0d |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> 0 < ( K x. 2 ) ) | 
						
							| 47 | 23 | nngt0d |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> 0 < N ) | 
						
							| 48 |  | pire |  |-  _pi e. RR | 
						
							| 49 |  | remulcl |  |-  ( ( K e. RR /\ _pi e. RR ) -> ( K x. _pi ) e. RR ) | 
						
							| 50 | 32 48 49 | sylancl |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. _pi ) e. RR ) | 
						
							| 51 | 6 | adantl |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( K x. _pi ) e. RR+ ) | 
						
							| 52 | 51 | rpgt0d |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> 0 < ( K x. _pi ) ) | 
						
							| 53 |  | ltdiv2 |  |-  ( ( ( ( K x. 2 ) e. RR /\ 0 < ( K x. 2 ) ) /\ ( N e. RR /\ 0 < N ) /\ ( ( K x. _pi ) e. RR /\ 0 < ( K x. _pi ) ) ) -> ( ( K x. 2 ) < N <-> ( ( K x. _pi ) / N ) < ( ( K x. _pi ) / ( K x. 2 ) ) ) ) | 
						
							| 54 | 20 46 24 47 50 52 53 | syl222anc |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. 2 ) < N <-> ( ( K x. _pi ) / N ) < ( ( K x. _pi ) / ( K x. 2 ) ) ) ) | 
						
							| 55 | 45 54 | mpbid |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) < ( ( K x. _pi ) / ( K x. 2 ) ) ) | 
						
							| 56 |  | picn |  |-  _pi e. CC | 
						
							| 57 | 56 | a1i |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> _pi e. CC ) | 
						
							| 58 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 59 | 58 | a1i |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 60 | 17 | nnne0d |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> K =/= 0 ) | 
						
							| 61 |  | divcan5 |  |-  ( ( _pi e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( K e. CC /\ K =/= 0 ) ) -> ( ( K x. _pi ) / ( K x. 2 ) ) = ( _pi / 2 ) ) | 
						
							| 62 | 57 59 26 60 61 | syl112anc |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / ( K x. 2 ) ) = ( _pi / 2 ) ) | 
						
							| 63 | 55 62 | breqtrd |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) < ( _pi / 2 ) ) | 
						
							| 64 |  | 0xr |  |-  0 e. RR* | 
						
							| 65 |  | rehalfcl |  |-  ( _pi e. RR -> ( _pi / 2 ) e. RR ) | 
						
							| 66 |  | rexr |  |-  ( ( _pi / 2 ) e. RR -> ( _pi / 2 ) e. RR* ) | 
						
							| 67 | 48 65 66 | mp2b |  |-  ( _pi / 2 ) e. RR* | 
						
							| 68 |  | elioo2 |  |-  ( ( 0 e. RR* /\ ( _pi / 2 ) e. RR* ) -> ( ( ( K x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( ( K x. _pi ) / N ) e. RR /\ 0 < ( ( K x. _pi ) / N ) /\ ( ( K x. _pi ) / N ) < ( _pi / 2 ) ) ) ) | 
						
							| 69 | 64 67 68 | mp2an |  |-  ( ( ( K x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) <-> ( ( ( K x. _pi ) / N ) e. RR /\ 0 < ( ( K x. _pi ) / N ) /\ ( ( K x. _pi ) / N ) < ( _pi / 2 ) ) ) | 
						
							| 70 | 15 16 63 69 | syl3anbrc |  |-  ( ( M e. NN /\ K e. ( 1 ... M ) ) -> ( ( K x. _pi ) / N ) e. ( 0 (,) ( _pi / 2 ) ) ) |