| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.n | ⊢ 𝑁  =  ( ( 2  ·  𝑀 )  +  1 ) | 
						
							| 2 |  | elfznn | ⊢ ( 𝐾  ∈  ( 1 ... 𝑀 )  →  𝐾  ∈  ℕ ) | 
						
							| 3 | 2 | nnrpd | ⊢ ( 𝐾  ∈  ( 1 ... 𝑀 )  →  𝐾  ∈  ℝ+ ) | 
						
							| 4 |  | pirp | ⊢ π  ∈  ℝ+ | 
						
							| 5 |  | rpmulcl | ⊢ ( ( 𝐾  ∈  ℝ+  ∧  π  ∈  ℝ+ )  →  ( 𝐾  ·  π )  ∈  ℝ+ ) | 
						
							| 6 | 3 4 5 | sylancl | ⊢ ( 𝐾  ∈  ( 1 ... 𝑀 )  →  ( 𝐾  ·  π )  ∈  ℝ+ ) | 
						
							| 7 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 8 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑀  ∈  ℕ )  →  ( 2  ·  𝑀 )  ∈  ℕ ) | 
						
							| 9 | 7 8 | mpan | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ·  𝑀 )  ∈  ℕ ) | 
						
							| 10 | 9 | peano2nnd | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 2  ·  𝑀 )  +  1 )  ∈  ℕ ) | 
						
							| 11 | 1 10 | eqeltrid | ⊢ ( 𝑀  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 12 | 11 | nnrpd | ⊢ ( 𝑀  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 13 |  | rpdivcl | ⊢ ( ( ( 𝐾  ·  π )  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  →  ( ( 𝐾  ·  π )  /  𝑁 )  ∈  ℝ+ ) | 
						
							| 14 | 6 12 13 | syl2anr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐾  ·  π )  /  𝑁 )  ∈  ℝ+ ) | 
						
							| 15 | 14 | rpred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐾  ·  π )  /  𝑁 )  ∈  ℝ ) | 
						
							| 16 | 14 | rpgt0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  0  <  ( ( 𝐾  ·  π )  /  𝑁 ) ) | 
						
							| 17 | 2 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ∈  ℕ ) | 
						
							| 18 |  | nnmulcl | ⊢ ( ( 𝐾  ∈  ℕ  ∧  2  ∈  ℕ )  →  ( 𝐾  ·  2 )  ∈  ℕ ) | 
						
							| 19 | 17 7 18 | sylancl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ·  2 )  ∈  ℕ ) | 
						
							| 20 | 19 | nnred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ·  2 )  ∈  ℝ ) | 
						
							| 21 | 9 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ·  𝑀 )  ∈  ℕ ) | 
						
							| 22 | 21 | nnred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ·  𝑀 )  ∈  ℝ ) | 
						
							| 23 | 11 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 24 | 23 | nnred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 25 | 1 24 | eqeltrrid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( ( 2  ·  𝑀 )  +  1 )  ∈  ℝ ) | 
						
							| 26 | 17 | nncnd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ∈  ℂ ) | 
						
							| 27 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 28 |  | mulcom | ⊢ ( ( 𝐾  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( 𝐾  ·  2 )  =  ( 2  ·  𝐾 ) ) | 
						
							| 29 | 26 27 28 | sylancl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ·  2 )  =  ( 2  ·  𝐾 ) ) | 
						
							| 30 |  | elfzle2 | ⊢ ( 𝐾  ∈  ( 1 ... 𝑀 )  →  𝐾  ≤  𝑀 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ≤  𝑀 ) | 
						
							| 32 | 17 | nnred | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ∈  ℝ ) | 
						
							| 33 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 35 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 36 |  | 2pos | ⊢ 0  <  2 | 
						
							| 37 | 35 36 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 39 |  | lemul2 | ⊢ ( ( 𝐾  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( 𝐾  ≤  𝑀  ↔  ( 2  ·  𝐾 )  ≤  ( 2  ·  𝑀 ) ) ) | 
						
							| 40 | 32 34 38 39 | syl3anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ≤  𝑀  ↔  ( 2  ·  𝐾 )  ≤  ( 2  ·  𝑀 ) ) ) | 
						
							| 41 | 31 40 | mpbid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ·  𝐾 )  ≤  ( 2  ·  𝑀 ) ) | 
						
							| 42 | 29 41 | eqbrtrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ·  2 )  ≤  ( 2  ·  𝑀 ) ) | 
						
							| 43 | 22 | ltp1d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ·  𝑀 )  <  ( ( 2  ·  𝑀 )  +  1 ) ) | 
						
							| 44 | 20 22 25 42 43 | lelttrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ·  2 )  <  ( ( 2  ·  𝑀 )  +  1 ) ) | 
						
							| 45 | 44 1 | breqtrrdi | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ·  2 )  <  𝑁 ) | 
						
							| 46 | 19 | nngt0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  0  <  ( 𝐾  ·  2 ) ) | 
						
							| 47 | 23 | nngt0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  0  <  𝑁 ) | 
						
							| 48 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 49 |  | remulcl | ⊢ ( ( 𝐾  ∈  ℝ  ∧  π  ∈  ℝ )  →  ( 𝐾  ·  π )  ∈  ℝ ) | 
						
							| 50 | 32 48 49 | sylancl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ·  π )  ∈  ℝ ) | 
						
							| 51 | 6 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 𝐾  ·  π )  ∈  ℝ+ ) | 
						
							| 52 | 51 | rpgt0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  0  <  ( 𝐾  ·  π ) ) | 
						
							| 53 |  | ltdiv2 | ⊢ ( ( ( ( 𝐾  ·  2 )  ∈  ℝ  ∧  0  <  ( 𝐾  ·  2 ) )  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 )  ∧  ( ( 𝐾  ·  π )  ∈  ℝ  ∧  0  <  ( 𝐾  ·  π ) ) )  →  ( ( 𝐾  ·  2 )  <  𝑁  ↔  ( ( 𝐾  ·  π )  /  𝑁 )  <  ( ( 𝐾  ·  π )  /  ( 𝐾  ·  2 ) ) ) ) | 
						
							| 54 | 20 46 24 47 50 52 53 | syl222anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐾  ·  2 )  <  𝑁  ↔  ( ( 𝐾  ·  π )  /  𝑁 )  <  ( ( 𝐾  ·  π )  /  ( 𝐾  ·  2 ) ) ) ) | 
						
							| 55 | 45 54 | mpbid | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐾  ·  π )  /  𝑁 )  <  ( ( 𝐾  ·  π )  /  ( 𝐾  ·  2 ) ) ) | 
						
							| 56 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 57 | 56 | a1i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  π  ∈  ℂ ) | 
						
							| 58 |  | 2cnne0 | ⊢ ( 2  ∈  ℂ  ∧  2  ≠  0 ) | 
						
							| 59 | 58 | a1i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 60 | 17 | nnne0d | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  𝐾  ≠  0 ) | 
						
							| 61 |  | divcan5 | ⊢ ( ( π  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 )  ∧  ( 𝐾  ∈  ℂ  ∧  𝐾  ≠  0 ) )  →  ( ( 𝐾  ·  π )  /  ( 𝐾  ·  2 ) )  =  ( π  /  2 ) ) | 
						
							| 62 | 57 59 26 60 61 | syl112anc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐾  ·  π )  /  ( 𝐾  ·  2 ) )  =  ( π  /  2 ) ) | 
						
							| 63 | 55 62 | breqtrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐾  ·  π )  /  𝑁 )  <  ( π  /  2 ) ) | 
						
							| 64 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 65 |  | rehalfcl | ⊢ ( π  ∈  ℝ  →  ( π  /  2 )  ∈  ℝ ) | 
						
							| 66 |  | rexr | ⊢ ( ( π  /  2 )  ∈  ℝ  →  ( π  /  2 )  ∈  ℝ* ) | 
						
							| 67 | 48 65 66 | mp2b | ⊢ ( π  /  2 )  ∈  ℝ* | 
						
							| 68 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( π  /  2 )  ∈  ℝ* )  →  ( ( ( 𝐾  ·  π )  /  𝑁 )  ∈  ( 0 (,) ( π  /  2 ) )  ↔  ( ( ( 𝐾  ·  π )  /  𝑁 )  ∈  ℝ  ∧  0  <  ( ( 𝐾  ·  π )  /  𝑁 )  ∧  ( ( 𝐾  ·  π )  /  𝑁 )  <  ( π  /  2 ) ) ) ) | 
						
							| 69 | 64 67 68 | mp2an | ⊢ ( ( ( 𝐾  ·  π )  /  𝑁 )  ∈  ( 0 (,) ( π  /  2 ) )  ↔  ( ( ( 𝐾  ·  π )  /  𝑁 )  ∈  ℝ  ∧  0  <  ( ( 𝐾  ·  π )  /  𝑁 )  ∧  ( ( 𝐾  ·  π )  /  𝑁 )  <  ( π  /  2 ) ) ) | 
						
							| 70 | 15 16 63 69 | syl3anbrc | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝐾  ∈  ( 1 ... 𝑀 ) )  →  ( ( 𝐾  ·  π )  /  𝑁 )  ∈  ( 0 (,) ( π  /  2 ) ) ) |