| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.n | ⊢ 𝑁  =  ( ( 2  ·  𝑀 )  +  1 ) | 
						
							| 2 |  | basel.p | ⊢ 𝑃  =  ( 𝑡  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  ·  ( 𝑡 ↑ 𝑗 ) ) ) | 
						
							| 3 |  | ssidd | ⊢ ( 𝑀  ∈  ℕ  →  ℂ  ⊆  ℂ ) | 
						
							| 4 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | elfznn0 | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  𝑗  ∈  ℕ0 ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑗 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑛  =  𝑗  →  ( 𝑁 C ( 2  ·  𝑛 ) )  =  ( 𝑁 C ( 2  ·  𝑗 ) ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝑀  −  𝑛 )  =  ( 𝑀  −  𝑗 ) ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝑛  =  𝑗  →  ( - 1 ↑ ( 𝑀  −  𝑛 ) )  =  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) ) | 
						
							| 10 | 7 9 | oveq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) )  =  ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) | 
						
							| 12 |  | ovex | ⊢ ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  ∈  V | 
						
							| 13 | 10 11 12 | fvmpt | ⊢ ( 𝑗  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) ) ) | 
						
							| 14 | 5 13 | syl | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) ) ) | 
						
							| 16 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 17 |  | nnmulcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝑀  ∈  ℕ )  →  ( 2  ·  𝑀 )  ∈  ℕ ) | 
						
							| 18 | 16 17 | mpan | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ·  𝑀 )  ∈  ℕ ) | 
						
							| 19 | 18 | peano2nnd | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 2  ·  𝑀 )  +  1 )  ∈  ℕ ) | 
						
							| 20 | 1 19 | eqeltrid | ⊢ ( 𝑀  ∈  ℕ  →  𝑁  ∈  ℕ ) | 
						
							| 21 | 20 | nnnn0d | ⊢ ( 𝑀  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 22 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 23 |  | nn0z | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ ) | 
						
							| 24 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 25 | 22 23 24 | sylancr | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  𝑛 )  ∈  ℤ ) | 
						
							| 26 |  | bccl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 2  ·  𝑛 )  ∈  ℤ )  →  ( 𝑁 C ( 2  ·  𝑛 ) )  ∈  ℕ0 ) | 
						
							| 27 | 21 25 26 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁 C ( 2  ·  𝑛 ) )  ∈  ℕ0 ) | 
						
							| 28 | 27 | nn0cnd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑁 C ( 2  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 29 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 30 |  | neg1ne0 | ⊢ - 1  ≠  0 | 
						
							| 31 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 32 |  | zsubcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 𝑀  −  𝑛 )  ∈  ℤ ) | 
						
							| 33 | 31 23 32 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑀  −  𝑛 )  ∈  ℤ ) | 
						
							| 34 |  | expclz | ⊢ ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0  ∧  ( 𝑀  −  𝑛 )  ∈  ℤ )  →  ( - 1 ↑ ( 𝑀  −  𝑛 ) )  ∈  ℂ ) | 
						
							| 35 | 29 30 33 34 | mp3an12i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( - 1 ↑ ( 𝑀  −  𝑛 ) )  ∈  ℂ ) | 
						
							| 36 | 28 35 | mulcld | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 37 | 36 | fmpttd | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 38 |  | ffvelcdm | ⊢ ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) : ℕ0 ⟶ ℂ  ∧  𝑗  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 39 | 37 5 38 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ∈  ℂ ) | 
						
							| 40 | 15 39 | eqeltrrd | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  ∈  ℂ ) | 
						
							| 41 | 3 4 40 | elplyd | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑡  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  ·  ( 𝑡 ↑ 𝑗 ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 42 | 2 41 | eqeltrid | ⊢ ( 𝑀  ∈  ℕ  →  𝑃  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 43 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 44 |  | nn0re | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ℝ ) | 
						
							| 45 |  | ltnle | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑗  ∈  ℝ )  →  ( 𝑀  <  𝑗  ↔  ¬  𝑗  ≤  𝑀 ) ) | 
						
							| 46 | 43 44 45 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑀  <  𝑗  ↔  ¬  𝑗  ≤  𝑀 ) ) | 
						
							| 47 | 13 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  =  ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) ) ) | 
						
							| 48 | 21 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 49 |  | nn0z | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ℤ ) | 
						
							| 50 | 49 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  𝑗  ∈  ℤ ) | 
						
							| 51 |  | zmulcl | ⊢ ( ( 2  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 2  ·  𝑗 )  ∈  ℤ ) | 
						
							| 52 | 22 50 51 | sylancr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 2  ·  𝑗 )  ∈  ℤ ) | 
						
							| 53 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 54 | 53 | 2timesi | ⊢ ( 2  ·  1 )  =  ( 1  +  1 ) | 
						
							| 55 | 54 | oveq2i | ⊢ ( ( 2  ·  𝑀 )  +  ( 2  ·  1 ) )  =  ( ( 2  ·  𝑀 )  +  ( 1  +  1 ) ) | 
						
							| 56 |  | 2cnd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  2  ∈  ℂ ) | 
						
							| 57 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  𝑀  ∈  ℂ ) | 
						
							| 59 | 53 | a1i | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  1  ∈  ℂ ) | 
						
							| 60 | 56 58 59 | adddid | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 2  ·  ( 𝑀  +  1 ) )  =  ( ( 2  ·  𝑀 )  +  ( 2  ·  1 ) ) ) | 
						
							| 61 | 1 | oveq1i | ⊢ ( 𝑁  +  1 )  =  ( ( ( 2  ·  𝑀 )  +  1 )  +  1 ) | 
						
							| 62 | 18 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 2  ·  𝑀 )  ∈  ℕ ) | 
						
							| 63 | 62 | nncnd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 2  ·  𝑀 )  ∈  ℂ ) | 
						
							| 64 | 63 59 59 | addassd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( ( ( 2  ·  𝑀 )  +  1 )  +  1 )  =  ( ( 2  ·  𝑀 )  +  ( 1  +  1 ) ) ) | 
						
							| 65 | 61 64 | eqtrid | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 𝑁  +  1 )  =  ( ( 2  ·  𝑀 )  +  ( 1  +  1 ) ) ) | 
						
							| 66 | 55 60 65 | 3eqtr4a | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 2  ·  ( 𝑀  +  1 ) )  =  ( 𝑁  +  1 ) ) | 
						
							| 67 |  | zltp1le | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 𝑀  <  𝑗  ↔  ( 𝑀  +  1 )  ≤  𝑗 ) ) | 
						
							| 68 | 31 49 67 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑀  <  𝑗  ↔  ( 𝑀  +  1 )  ≤  𝑗 ) ) | 
						
							| 69 | 68 | biimpa | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 𝑀  +  1 )  ≤  𝑗 ) | 
						
							| 70 | 43 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  𝑀  ∈  ℝ ) | 
						
							| 71 |  | peano2re | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 73 | 44 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  𝑗  ∈  ℝ ) | 
						
							| 74 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 75 |  | 2pos | ⊢ 0  <  2 | 
						
							| 76 | 74 75 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 77 | 76 | a1i | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 78 |  | lemul2 | ⊢ ( ( ( 𝑀  +  1 )  ∈  ℝ  ∧  𝑗  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝑀  +  1 )  ≤  𝑗  ↔  ( 2  ·  ( 𝑀  +  1 ) )  ≤  ( 2  ·  𝑗 ) ) ) | 
						
							| 79 | 72 73 77 78 | syl3anc | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( ( 𝑀  +  1 )  ≤  𝑗  ↔  ( 2  ·  ( 𝑀  +  1 ) )  ≤  ( 2  ·  𝑗 ) ) ) | 
						
							| 80 | 69 79 | mpbid | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 2  ·  ( 𝑀  +  1 ) )  ≤  ( 2  ·  𝑗 ) ) | 
						
							| 81 | 66 80 | eqbrtrrd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 𝑁  +  1 )  ≤  ( 2  ·  𝑗 ) ) | 
						
							| 82 | 20 | nnzd | ⊢ ( 𝑀  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 83 | 82 | ad2antrr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  𝑁  ∈  ℤ ) | 
						
							| 84 |  | zltp1le | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 2  ·  𝑗 )  ∈  ℤ )  →  ( 𝑁  <  ( 2  ·  𝑗 )  ↔  ( 𝑁  +  1 )  ≤  ( 2  ·  𝑗 ) ) ) | 
						
							| 85 | 83 52 84 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 𝑁  <  ( 2  ·  𝑗 )  ↔  ( 𝑁  +  1 )  ≤  ( 2  ·  𝑗 ) ) ) | 
						
							| 86 | 81 85 | mpbird | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  𝑁  <  ( 2  ·  𝑗 ) ) | 
						
							| 87 | 86 | olcd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( ( 2  ·  𝑗 )  <  0  ∨  𝑁  <  ( 2  ·  𝑗 ) ) ) | 
						
							| 88 |  | bcval4 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 2  ·  𝑗 )  ∈  ℤ  ∧  ( ( 2  ·  𝑗 )  <  0  ∨  𝑁  <  ( 2  ·  𝑗 ) ) )  →  ( 𝑁 C ( 2  ·  𝑗 ) )  =  0 ) | 
						
							| 89 | 48 52 87 88 | syl3anc | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 𝑁 C ( 2  ·  𝑗 ) )  =  0 ) | 
						
							| 90 | 89 | oveq1d | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  =  ( 0  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) ) ) | 
						
							| 91 |  | zsubcl | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℤ )  →  ( 𝑀  −  𝑗 )  ∈  ℤ ) | 
						
							| 92 | 31 49 91 | syl2an | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑀  −  𝑗 )  ∈  ℤ ) | 
						
							| 93 |  | expclz | ⊢ ( ( - 1  ∈  ℂ  ∧  - 1  ≠  0  ∧  ( 𝑀  −  𝑗 )  ∈  ℤ )  →  ( - 1 ↑ ( 𝑀  −  𝑗 ) )  ∈  ℂ ) | 
						
							| 94 | 29 30 92 93 | mp3an12i | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( - 1 ↑ ( 𝑀  −  𝑗 ) )  ∈  ℂ ) | 
						
							| 95 | 94 | adantr | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( - 1 ↑ ( 𝑀  −  𝑗 ) )  ∈  ℂ ) | 
						
							| 96 | 95 | mul02d | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( 0  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  =  0 ) | 
						
							| 97 | 47 90 96 | 3eqtrd | ⊢ ( ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  ∧  𝑀  <  𝑗 )  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  =  0 ) | 
						
							| 98 | 97 | ex | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( 𝑀  <  𝑗  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  =  0 ) ) | 
						
							| 99 | 46 98 | sylbird | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ¬  𝑗  ≤  𝑀  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  =  0 ) ) | 
						
							| 100 | 99 | necon1ad | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑗  ∈  ℕ0 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ≠  0  →  𝑗  ≤  𝑀 ) ) | 
						
							| 101 | 100 | ralrimiva | ⊢ ( 𝑀  ∈  ℕ  →  ∀ 𝑗  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ≠  0  →  𝑗  ≤  𝑀 ) ) | 
						
							| 102 |  | plyco0 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) : ℕ0 ⟶ ℂ )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) )  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑗  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ≠  0  →  𝑗  ≤  𝑀 ) ) ) | 
						
							| 103 | 4 37 102 | syl2anc | ⊢ ( 𝑀  ∈  ℕ  →  ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) )  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑗  ∈  ℕ0 ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ≠  0  →  𝑗  ≤  𝑀 ) ) ) | 
						
							| 104 | 101 103 | mpbird | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) )  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 105 | 14 | oveq1d | ⊢ ( 𝑗  ∈  ( 0 ... 𝑀 )  →  ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑡 ↑ 𝑗 ) )  =  ( ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  ·  ( 𝑡 ↑ 𝑗 ) ) ) | 
						
							| 106 | 105 | sumeq2i | ⊢ Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑡 ↑ 𝑗 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  ·  ( 𝑡 ↑ 𝑗 ) ) | 
						
							| 107 | 106 | mpteq2i | ⊢ ( 𝑡  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑡 ↑ 𝑗 ) ) )  =  ( 𝑡  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2  ·  𝑗 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑗 ) ) )  ·  ( 𝑡 ↑ 𝑗 ) ) ) | 
						
							| 108 | 2 107 | eqtr4i | ⊢ 𝑃  =  ( 𝑡  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑡 ↑ 𝑗 ) ) ) | 
						
							| 109 | 108 | a1i | ⊢ ( 𝑀  ∈  ℕ  →  𝑃  =  ( 𝑡  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑀 ) ( ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑗 )  ·  ( 𝑡 ↑ 𝑗 ) ) ) ) | 
						
							| 110 |  | oveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 2  ·  𝑛 )  =  ( 2  ·  𝑀 ) ) | 
						
							| 111 | 110 | oveq2d | ⊢ ( 𝑛  =  𝑀  →  ( 𝑁 C ( 2  ·  𝑛 ) )  =  ( 𝑁 C ( 2  ·  𝑀 ) ) ) | 
						
							| 112 |  | oveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑀  −  𝑛 )  =  ( 𝑀  −  𝑀 ) ) | 
						
							| 113 | 112 | oveq2d | ⊢ ( 𝑛  =  𝑀  →  ( - 1 ↑ ( 𝑀  −  𝑛 ) )  =  ( - 1 ↑ ( 𝑀  −  𝑀 ) ) ) | 
						
							| 114 | 111 113 | oveq12d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) )  =  ( ( 𝑁 C ( 2  ·  𝑀 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑀 ) ) ) ) | 
						
							| 115 |  | ovex | ⊢ ( ( 𝑁 C ( 2  ·  𝑀 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑀 ) ) )  ∈  V | 
						
							| 116 | 114 11 115 | fvmpt | ⊢ ( 𝑀  ∈  ℕ0  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑀 )  =  ( ( 𝑁 C ( 2  ·  𝑀 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑀 ) ) ) ) | 
						
							| 117 | 4 116 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑀 )  =  ( ( 𝑁 C ( 2  ·  𝑀 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑀 ) ) ) ) | 
						
							| 118 | 57 | subidd | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  −  𝑀 )  =  0 ) | 
						
							| 119 | 118 | oveq2d | ⊢ ( 𝑀  ∈  ℕ  →  ( - 1 ↑ ( 𝑀  −  𝑀 ) )  =  ( - 1 ↑ 0 ) ) | 
						
							| 120 |  | exp0 | ⊢ ( - 1  ∈  ℂ  →  ( - 1 ↑ 0 )  =  1 ) | 
						
							| 121 | 29 120 | ax-mp | ⊢ ( - 1 ↑ 0 )  =  1 | 
						
							| 122 | 119 121 | eqtrdi | ⊢ ( 𝑀  ∈  ℕ  →  ( - 1 ↑ ( 𝑀  −  𝑀 ) )  =  1 ) | 
						
							| 123 | 122 | oveq2d | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑁 C ( 2  ·  𝑀 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑀 ) ) )  =  ( ( 𝑁 C ( 2  ·  𝑀 ) )  ·  1 ) ) | 
						
							| 124 | 18 | nnred | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ·  𝑀 )  ∈  ℝ ) | 
						
							| 125 | 124 | lep1d | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ·  𝑀 )  ≤  ( ( 2  ·  𝑀 )  +  1 ) ) | 
						
							| 126 | 125 1 | breqtrrdi | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ·  𝑀 )  ≤  𝑁 ) | 
						
							| 127 | 18 | nnnn0d | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ·  𝑀 )  ∈  ℕ0 ) | 
						
							| 128 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 129 | 127 128 | eleqtrdi | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ·  𝑀 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 130 |  | elfz5 | ⊢ ( ( ( 2  ·  𝑀 )  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑁  ∈  ℤ )  →  ( ( 2  ·  𝑀 )  ∈  ( 0 ... 𝑁 )  ↔  ( 2  ·  𝑀 )  ≤  𝑁 ) ) | 
						
							| 131 | 129 82 130 | syl2anc | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 2  ·  𝑀 )  ∈  ( 0 ... 𝑁 )  ↔  ( 2  ·  𝑀 )  ≤  𝑁 ) ) | 
						
							| 132 | 126 131 | mpbird | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ·  𝑀 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 133 |  | bccl2 | ⊢ ( ( 2  ·  𝑀 )  ∈  ( 0 ... 𝑁 )  →  ( 𝑁 C ( 2  ·  𝑀 ) )  ∈  ℕ ) | 
						
							| 134 | 132 133 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑁 C ( 2  ·  𝑀 ) )  ∈  ℕ ) | 
						
							| 135 | 134 | nncnd | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑁 C ( 2  ·  𝑀 ) )  ∈  ℂ ) | 
						
							| 136 | 135 | mulridd | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑁 C ( 2  ·  𝑀 ) )  ·  1 )  =  ( 𝑁 C ( 2  ·  𝑀 ) ) ) | 
						
							| 137 | 117 123 136 | 3eqtrd | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑀 )  =  ( 𝑁 C ( 2  ·  𝑀 ) ) ) | 
						
							| 138 | 134 | nnne0d | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑁 C ( 2  ·  𝑀 ) )  ≠  0 ) | 
						
							| 139 | 137 138 | eqnetrd | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ‘ 𝑀 )  ≠  0 ) | 
						
							| 140 | 42 4 37 104 109 139 | dgreq | ⊢ ( 𝑀  ∈  ℕ  →  ( deg ‘ 𝑃 )  =  𝑀 ) | 
						
							| 141 | 42 4 37 104 109 | coeeq | ⊢ ( 𝑀  ∈  ℕ  →  ( coeff ‘ 𝑃 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ) | 
						
							| 142 | 42 140 141 | 3jca | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝑃 )  =  𝑀  ∧  ( coeff ‘ 𝑃 )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝑁 C ( 2  ·  𝑛 ) )  ·  ( - 1 ↑ ( 𝑀  −  𝑛 ) ) ) ) ) ) |