Metamath Proof Explorer


Theorem basellem2

Description: Lemma for basel . Show that P is a polynomial of degree M , and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014)

Ref Expression
Hypotheses basel.n 𝑁 = ( ( 2 · 𝑀 ) + 1 )
basel.p 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) · ( 𝑡𝑗 ) ) )
Assertion basellem2 ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑃 ) = 𝑀 ∧ ( coeff ‘ 𝑃 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 basel.n 𝑁 = ( ( 2 · 𝑀 ) + 1 )
2 basel.p 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) · ( 𝑡𝑗 ) ) )
3 ssidd ( 𝑀 ∈ ℕ → ℂ ⊆ ℂ )
4 nnnn0 ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 )
5 elfznn0 ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 )
6 oveq2 ( 𝑛 = 𝑗 → ( 2 · 𝑛 ) = ( 2 · 𝑗 ) )
7 6 oveq2d ( 𝑛 = 𝑗 → ( 𝑁 C ( 2 · 𝑛 ) ) = ( 𝑁 C ( 2 · 𝑗 ) ) )
8 oveq2 ( 𝑛 = 𝑗 → ( 𝑀𝑛 ) = ( 𝑀𝑗 ) )
9 8 oveq2d ( 𝑛 = 𝑗 → ( - 1 ↑ ( 𝑀𝑛 ) ) = ( - 1 ↑ ( 𝑀𝑗 ) ) )
10 7 9 oveq12d ( 𝑛 = 𝑗 → ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) )
11 eqid ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) )
12 ovex ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) ∈ V
13 10 11 12 fvmpt ( 𝑗 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) )
14 5 13 syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) )
15 14 adantl ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) )
16 2nn 2 ∈ ℕ
17 nnmulcl ( ( 2 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 2 · 𝑀 ) ∈ ℕ )
18 16 17 mpan ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℕ )
19 18 peano2nnd ( 𝑀 ∈ ℕ → ( ( 2 · 𝑀 ) + 1 ) ∈ ℕ )
20 1 19 eqeltrid ( 𝑀 ∈ ℕ → 𝑁 ∈ ℕ )
21 20 nnnn0d ( 𝑀 ∈ ℕ → 𝑁 ∈ ℕ0 )
22 2z 2 ∈ ℤ
23 nn0z ( 𝑛 ∈ ℕ0𝑛 ∈ ℤ )
24 zmulcl ( ( 2 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 2 · 𝑛 ) ∈ ℤ )
25 22 23 24 sylancr ( 𝑛 ∈ ℕ0 → ( 2 · 𝑛 ) ∈ ℤ )
26 bccl ( ( 𝑁 ∈ ℕ0 ∧ ( 2 · 𝑛 ) ∈ ℤ ) → ( 𝑁 C ( 2 · 𝑛 ) ) ∈ ℕ0 )
27 21 25 26 syl2an ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 C ( 2 · 𝑛 ) ) ∈ ℕ0 )
28 27 nn0cnd ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 C ( 2 · 𝑛 ) ) ∈ ℂ )
29 neg1cn - 1 ∈ ℂ
30 neg1ne0 - 1 ≠ 0
31 nnz ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ )
32 zsubcl ( ( 𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑀𝑛 ) ∈ ℤ )
33 31 23 32 syl2an ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀𝑛 ) ∈ ℤ )
34 expclz ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( 𝑀𝑛 ) ∈ ℤ ) → ( - 1 ↑ ( 𝑀𝑛 ) ) ∈ ℂ )
35 29 30 33 34 mp3an12i ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑀𝑛 ) ) ∈ ℂ )
36 28 35 mulcld ( ( 𝑀 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ∈ ℂ )
37 36 fmpttd ( 𝑀 ∈ ℕ → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) : ℕ0 ⟶ ℂ )
38 ffvelrn ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) : ℕ0 ⟶ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ )
39 37 5 38 syl2an ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) ∈ ℂ )
40 15 39 eqeltrrd ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) ∈ ℂ )
41 3 4 40 elplyd ( 𝑀 ∈ ℕ → ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) · ( 𝑡𝑗 ) ) ) ∈ ( Poly ‘ ℂ ) )
42 2 41 eqeltrid ( 𝑀 ∈ ℕ → 𝑃 ∈ ( Poly ‘ ℂ ) )
43 nnre ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ )
44 nn0re ( 𝑗 ∈ ℕ0𝑗 ∈ ℝ )
45 ltnle ( ( 𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑀 < 𝑗 ↔ ¬ 𝑗𝑀 ) )
46 43 44 45 syl2an ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 < 𝑗 ↔ ¬ 𝑗𝑀 ) )
47 13 ad2antlr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) = ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) )
48 21 ad2antrr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑁 ∈ ℕ0 )
49 nn0z ( 𝑗 ∈ ℕ0𝑗 ∈ ℤ )
50 49 ad2antlr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑗 ∈ ℤ )
51 zmulcl ( ( 2 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 2 · 𝑗 ) ∈ ℤ )
52 22 50 51 sylancr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · 𝑗 ) ∈ ℤ )
53 ax-1cn 1 ∈ ℂ
54 53 2timesi ( 2 · 1 ) = ( 1 + 1 )
55 54 oveq2i ( ( 2 · 𝑀 ) + ( 2 · 1 ) ) = ( ( 2 · 𝑀 ) + ( 1 + 1 ) )
56 2cnd ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 2 ∈ ℂ )
57 nncn ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ )
58 57 ad2antrr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑀 ∈ ℂ )
59 53 a1i ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 1 ∈ ℂ )
60 56 58 59 adddid ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · ( 𝑀 + 1 ) ) = ( ( 2 · 𝑀 ) + ( 2 · 1 ) ) )
61 1 oveq1i ( 𝑁 + 1 ) = ( ( ( 2 · 𝑀 ) + 1 ) + 1 )
62 18 ad2antrr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · 𝑀 ) ∈ ℕ )
63 62 nncnd ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · 𝑀 ) ∈ ℂ )
64 63 59 59 addassd ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( ( 2 · 𝑀 ) + 1 ) + 1 ) = ( ( 2 · 𝑀 ) + ( 1 + 1 ) ) )
65 61 64 syl5eq ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑁 + 1 ) = ( ( 2 · 𝑀 ) + ( 1 + 1 ) ) )
66 55 60 65 3eqtr4a ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · ( 𝑀 + 1 ) ) = ( 𝑁 + 1 ) )
67 zltp1le ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑀 < 𝑗 ↔ ( 𝑀 + 1 ) ≤ 𝑗 ) )
68 31 49 67 syl2an ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 < 𝑗 ↔ ( 𝑀 + 1 ) ≤ 𝑗 ) )
69 68 biimpa ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑀 + 1 ) ≤ 𝑗 )
70 43 ad2antrr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑀 ∈ ℝ )
71 peano2re ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ )
72 70 71 syl ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑀 + 1 ) ∈ ℝ )
73 44 ad2antlr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑗 ∈ ℝ )
74 2re 2 ∈ ℝ
75 2pos 0 < 2
76 74 75 pm3.2i ( 2 ∈ ℝ ∧ 0 < 2 )
77 76 a1i ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 ∈ ℝ ∧ 0 < 2 ) )
78 lemul2 ( ( ( 𝑀 + 1 ) ∈ ℝ ∧ 𝑗 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝑀 + 1 ) ≤ 𝑗 ↔ ( 2 · ( 𝑀 + 1 ) ) ≤ ( 2 · 𝑗 ) ) )
79 72 73 77 78 syl3anc ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 𝑀 + 1 ) ≤ 𝑗 ↔ ( 2 · ( 𝑀 + 1 ) ) ≤ ( 2 · 𝑗 ) ) )
80 69 79 mpbid ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 2 · ( 𝑀 + 1 ) ) ≤ ( 2 · 𝑗 ) )
81 66 80 eqbrtrrd ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑁 + 1 ) ≤ ( 2 · 𝑗 ) )
82 20 nnzd ( 𝑀 ∈ ℕ → 𝑁 ∈ ℤ )
83 82 ad2antrr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑁 ∈ ℤ )
84 zltp1le ( ( 𝑁 ∈ ℤ ∧ ( 2 · 𝑗 ) ∈ ℤ ) → ( 𝑁 < ( 2 · 𝑗 ) ↔ ( 𝑁 + 1 ) ≤ ( 2 · 𝑗 ) ) )
85 83 52 84 syl2anc ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑁 < ( 2 · 𝑗 ) ↔ ( 𝑁 + 1 ) ≤ ( 2 · 𝑗 ) ) )
86 81 85 mpbird ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → 𝑁 < ( 2 · 𝑗 ) )
87 86 olcd ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 2 · 𝑗 ) < 0 ∨ 𝑁 < ( 2 · 𝑗 ) ) )
88 bcval4 ( ( 𝑁 ∈ ℕ0 ∧ ( 2 · 𝑗 ) ∈ ℤ ∧ ( ( 2 · 𝑗 ) < 0 ∨ 𝑁 < ( 2 · 𝑗 ) ) ) → ( 𝑁 C ( 2 · 𝑗 ) ) = 0 )
89 48 52 87 88 syl3anc ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 𝑁 C ( 2 · 𝑗 ) ) = 0 )
90 89 oveq1d ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) = ( 0 · ( - 1 ↑ ( 𝑀𝑗 ) ) ) )
91 zsubcl ( ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ) → ( 𝑀𝑗 ) ∈ ℤ )
92 31 49 91 syl2an ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀𝑗 ) ∈ ℤ )
93 expclz ( ( - 1 ∈ ℂ ∧ - 1 ≠ 0 ∧ ( 𝑀𝑗 ) ∈ ℤ ) → ( - 1 ↑ ( 𝑀𝑗 ) ) ∈ ℂ )
94 29 30 92 93 mp3an12i ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( - 1 ↑ ( 𝑀𝑗 ) ) ∈ ℂ )
95 94 adantr ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( - 1 ↑ ( 𝑀𝑗 ) ) ∈ ℂ )
96 95 mul02d ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( 0 · ( - 1 ↑ ( 𝑀𝑗 ) ) ) = 0 )
97 47 90 96 3eqtrd ( ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) ∧ 𝑀 < 𝑗 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) = 0 )
98 97 ex ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( 𝑀 < 𝑗 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) = 0 ) )
99 46 98 sylbird ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ¬ 𝑗𝑀 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) = 0 ) )
100 99 necon1ad ( ( 𝑀 ∈ ℕ ∧ 𝑗 ∈ ℕ0 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) ≠ 0 → 𝑗𝑀 ) )
101 100 ralrimiva ( 𝑀 ∈ ℕ → ∀ 𝑗 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) ≠ 0 → 𝑗𝑀 ) )
102 plyco0 ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) : ℕ0 ⟶ ℂ ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ↔ ∀ 𝑗 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) ≠ 0 → 𝑗𝑀 ) ) )
103 4 37 102 syl2anc ( 𝑀 ∈ ℕ → ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ↔ ∀ 𝑗 ∈ ℕ0 ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) ≠ 0 → 𝑗𝑀 ) ) )
104 101 103 mpbird ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) “ ( ℤ ‘ ( 𝑀 + 1 ) ) ) = { 0 } )
105 14 oveq1d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡𝑗 ) ) = ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) · ( 𝑡𝑗 ) ) )
106 105 sumeq2i Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡𝑗 ) ) = Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) · ( 𝑡𝑗 ) )
107 106 mpteq2i ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡𝑗 ) ) ) = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑁 C ( 2 · 𝑗 ) ) · ( - 1 ↑ ( 𝑀𝑗 ) ) ) · ( 𝑡𝑗 ) ) )
108 2 107 eqtr4i 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡𝑗 ) ) )
109 108 a1i ( 𝑀 ∈ ℕ → 𝑃 = ( 𝑡 ∈ ℂ ↦ Σ 𝑗 ∈ ( 0 ... 𝑀 ) ( ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑗 ) · ( 𝑡𝑗 ) ) ) )
110 oveq2 ( 𝑛 = 𝑀 → ( 2 · 𝑛 ) = ( 2 · 𝑀 ) )
111 110 oveq2d ( 𝑛 = 𝑀 → ( 𝑁 C ( 2 · 𝑛 ) ) = ( 𝑁 C ( 2 · 𝑀 ) ) )
112 oveq2 ( 𝑛 = 𝑀 → ( 𝑀𝑛 ) = ( 𝑀𝑀 ) )
113 112 oveq2d ( 𝑛 = 𝑀 → ( - 1 ↑ ( 𝑀𝑛 ) ) = ( - 1 ↑ ( 𝑀𝑀 ) ) )
114 111 113 oveq12d ( 𝑛 = 𝑀 → ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) = ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀𝑀 ) ) ) )
115 ovex ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀𝑀 ) ) ) ∈ V
116 114 11 115 fvmpt ( 𝑀 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑀 ) = ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀𝑀 ) ) ) )
117 4 116 syl ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑀 ) = ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀𝑀 ) ) ) )
118 57 subidd ( 𝑀 ∈ ℕ → ( 𝑀𝑀 ) = 0 )
119 118 oveq2d ( 𝑀 ∈ ℕ → ( - 1 ↑ ( 𝑀𝑀 ) ) = ( - 1 ↑ 0 ) )
120 exp0 ( - 1 ∈ ℂ → ( - 1 ↑ 0 ) = 1 )
121 29 120 ax-mp ( - 1 ↑ 0 ) = 1
122 119 121 syl6eq ( 𝑀 ∈ ℕ → ( - 1 ↑ ( 𝑀𝑀 ) ) = 1 )
123 122 oveq2d ( 𝑀 ∈ ℕ → ( ( 𝑁 C ( 2 · 𝑀 ) ) · ( - 1 ↑ ( 𝑀𝑀 ) ) ) = ( ( 𝑁 C ( 2 · 𝑀 ) ) · 1 ) )
124 18 nnred ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℝ )
125 124 lep1d ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ≤ ( ( 2 · 𝑀 ) + 1 ) )
126 125 1 breqtrrdi ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ≤ 𝑁 )
127 18 nnnn0d ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ℕ0 )
128 nn0uz 0 = ( ℤ ‘ 0 )
129 127 128 eleqtrdi ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ( ℤ ‘ 0 ) )
130 elfz5 ( ( ( 2 · 𝑀 ) ∈ ( ℤ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( ( 2 · 𝑀 ) ∈ ( 0 ... 𝑁 ) ↔ ( 2 · 𝑀 ) ≤ 𝑁 ) )
131 129 82 130 syl2anc ( 𝑀 ∈ ℕ → ( ( 2 · 𝑀 ) ∈ ( 0 ... 𝑁 ) ↔ ( 2 · 𝑀 ) ≤ 𝑁 ) )
132 126 131 mpbird ( 𝑀 ∈ ℕ → ( 2 · 𝑀 ) ∈ ( 0 ... 𝑁 ) )
133 bccl2 ( ( 2 · 𝑀 ) ∈ ( 0 ... 𝑁 ) → ( 𝑁 C ( 2 · 𝑀 ) ) ∈ ℕ )
134 132 133 syl ( 𝑀 ∈ ℕ → ( 𝑁 C ( 2 · 𝑀 ) ) ∈ ℕ )
135 134 nncnd ( 𝑀 ∈ ℕ → ( 𝑁 C ( 2 · 𝑀 ) ) ∈ ℂ )
136 135 mulid1d ( 𝑀 ∈ ℕ → ( ( 𝑁 C ( 2 · 𝑀 ) ) · 1 ) = ( 𝑁 C ( 2 · 𝑀 ) ) )
137 117 123 136 3eqtrd ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑀 ) = ( 𝑁 C ( 2 · 𝑀 ) ) )
138 134 nnne0d ( 𝑀 ∈ ℕ → ( 𝑁 C ( 2 · 𝑀 ) ) ≠ 0 )
139 137 138 eqnetrd ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ‘ 𝑀 ) ≠ 0 )
140 42 4 37 104 109 139 dgreq ( 𝑀 ∈ ℕ → ( deg ‘ 𝑃 ) = 𝑀 )
141 42 4 37 104 109 coeeq ( 𝑀 ∈ ℕ → ( coeff ‘ 𝑃 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) )
142 42 140 141 3jca ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝑃 ) = 𝑀 ∧ ( coeff ‘ 𝑃 ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑁 C ( 2 · 𝑛 ) ) · ( - 1 ↑ ( 𝑀𝑛 ) ) ) ) ) )