| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.n |  |-  N = ( ( 2 x. M ) + 1 ) | 
						
							| 2 |  | basel.p |  |-  P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) | 
						
							| 3 |  | ssidd |  |-  ( M e. NN -> CC C_ CC ) | 
						
							| 4 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 5 |  | elfznn0 |  |-  ( j e. ( 0 ... M ) -> j e. NN0 ) | 
						
							| 6 |  | oveq2 |  |-  ( n = j -> ( 2 x. n ) = ( 2 x. j ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( n = j -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. j ) ) ) | 
						
							| 8 |  | oveq2 |  |-  ( n = j -> ( M - n ) = ( M - j ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( n = j -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - j ) ) ) | 
						
							| 10 | 7 9 | oveq12d |  |-  ( n = j -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) | 
						
							| 11 |  | eqid |  |-  ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) | 
						
							| 12 |  | ovex |  |-  ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) e. _V | 
						
							| 13 | 10 11 12 | fvmpt |  |-  ( j e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) | 
						
							| 14 | 5 13 | syl |  |-  ( j e. ( 0 ... M ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( M e. NN /\ j e. ( 0 ... M ) ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) | 
						
							| 16 |  | 2nn |  |-  2 e. NN | 
						
							| 17 |  | nnmulcl |  |-  ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) | 
						
							| 18 | 16 17 | mpan |  |-  ( M e. NN -> ( 2 x. M ) e. NN ) | 
						
							| 19 | 18 | peano2nnd |  |-  ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) | 
						
							| 20 | 1 19 | eqeltrid |  |-  ( M e. NN -> N e. NN ) | 
						
							| 21 | 20 | nnnn0d |  |-  ( M e. NN -> N e. NN0 ) | 
						
							| 22 |  | 2z |  |-  2 e. ZZ | 
						
							| 23 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 24 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ n e. ZZ ) -> ( 2 x. n ) e. ZZ ) | 
						
							| 25 | 22 23 24 | sylancr |  |-  ( n e. NN0 -> ( 2 x. n ) e. ZZ ) | 
						
							| 26 |  | bccl |  |-  ( ( N e. NN0 /\ ( 2 x. n ) e. ZZ ) -> ( N _C ( 2 x. n ) ) e. NN0 ) | 
						
							| 27 | 21 25 26 | syl2an |  |-  ( ( M e. NN /\ n e. NN0 ) -> ( N _C ( 2 x. n ) ) e. NN0 ) | 
						
							| 28 | 27 | nn0cnd |  |-  ( ( M e. NN /\ n e. NN0 ) -> ( N _C ( 2 x. n ) ) e. CC ) | 
						
							| 29 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 30 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 31 |  | nnz |  |-  ( M e. NN -> M e. ZZ ) | 
						
							| 32 |  | zsubcl |  |-  ( ( M e. ZZ /\ n e. ZZ ) -> ( M - n ) e. ZZ ) | 
						
							| 33 | 31 23 32 | syl2an |  |-  ( ( M e. NN /\ n e. NN0 ) -> ( M - n ) e. ZZ ) | 
						
							| 34 |  | expclz |  |-  ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ ( M - n ) e. ZZ ) -> ( -u 1 ^ ( M - n ) ) e. CC ) | 
						
							| 35 | 29 30 33 34 | mp3an12i |  |-  ( ( M e. NN /\ n e. NN0 ) -> ( -u 1 ^ ( M - n ) ) e. CC ) | 
						
							| 36 | 28 35 | mulcld |  |-  ( ( M e. NN /\ n e. NN0 ) -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) e. CC ) | 
						
							| 37 | 36 | fmpttd |  |-  ( M e. NN -> ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) : NN0 --> CC ) | 
						
							| 38 |  | ffvelcdm |  |-  ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) : NN0 --> CC /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) e. CC ) | 
						
							| 39 | 37 5 38 | syl2an |  |-  ( ( M e. NN /\ j e. ( 0 ... M ) ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) e. CC ) | 
						
							| 40 | 15 39 | eqeltrrd |  |-  ( ( M e. NN /\ j e. ( 0 ... M ) ) -> ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) e. CC ) | 
						
							| 41 | 3 4 40 | elplyd |  |-  ( M e. NN -> ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) e. ( Poly ` CC ) ) | 
						
							| 42 | 2 41 | eqeltrid |  |-  ( M e. NN -> P e. ( Poly ` CC ) ) | 
						
							| 43 |  | nnre |  |-  ( M e. NN -> M e. RR ) | 
						
							| 44 |  | nn0re |  |-  ( j e. NN0 -> j e. RR ) | 
						
							| 45 |  | ltnle |  |-  ( ( M e. RR /\ j e. RR ) -> ( M < j <-> -. j <_ M ) ) | 
						
							| 46 | 43 44 45 | syl2an |  |-  ( ( M e. NN /\ j e. NN0 ) -> ( M < j <-> -. j <_ M ) ) | 
						
							| 47 | 13 | ad2antlr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) ) | 
						
							| 48 | 21 | ad2antrr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> N e. NN0 ) | 
						
							| 49 |  | nn0z |  |-  ( j e. NN0 -> j e. ZZ ) | 
						
							| 50 | 49 | ad2antlr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> j e. ZZ ) | 
						
							| 51 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ j e. ZZ ) -> ( 2 x. j ) e. ZZ ) | 
						
							| 52 | 22 50 51 | sylancr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. j ) e. ZZ ) | 
						
							| 53 |  | ax-1cn |  |-  1 e. CC | 
						
							| 54 | 53 | 2timesi |  |-  ( 2 x. 1 ) = ( 1 + 1 ) | 
						
							| 55 | 54 | oveq2i |  |-  ( ( 2 x. M ) + ( 2 x. 1 ) ) = ( ( 2 x. M ) + ( 1 + 1 ) ) | 
						
							| 56 |  | 2cnd |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> 2 e. CC ) | 
						
							| 57 |  | nncn |  |-  ( M e. NN -> M e. CC ) | 
						
							| 58 | 57 | ad2antrr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> M e. CC ) | 
						
							| 59 | 53 | a1i |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> 1 e. CC ) | 
						
							| 60 | 56 58 59 | adddid |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. ( M + 1 ) ) = ( ( 2 x. M ) + ( 2 x. 1 ) ) ) | 
						
							| 61 | 1 | oveq1i |  |-  ( N + 1 ) = ( ( ( 2 x. M ) + 1 ) + 1 ) | 
						
							| 62 | 18 | ad2antrr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. M ) e. NN ) | 
						
							| 63 | 62 | nncnd |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. M ) e. CC ) | 
						
							| 64 | 63 59 59 | addassd |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( ( 2 x. M ) + 1 ) + 1 ) = ( ( 2 x. M ) + ( 1 + 1 ) ) ) | 
						
							| 65 | 61 64 | eqtrid |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( N + 1 ) = ( ( 2 x. M ) + ( 1 + 1 ) ) ) | 
						
							| 66 | 55 60 65 | 3eqtr4a |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. ( M + 1 ) ) = ( N + 1 ) ) | 
						
							| 67 |  | zltp1le |  |-  ( ( M e. ZZ /\ j e. ZZ ) -> ( M < j <-> ( M + 1 ) <_ j ) ) | 
						
							| 68 | 31 49 67 | syl2an |  |-  ( ( M e. NN /\ j e. NN0 ) -> ( M < j <-> ( M + 1 ) <_ j ) ) | 
						
							| 69 | 68 | biimpa |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( M + 1 ) <_ j ) | 
						
							| 70 | 43 | ad2antrr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> M e. RR ) | 
						
							| 71 |  | peano2re |  |-  ( M e. RR -> ( M + 1 ) e. RR ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( M + 1 ) e. RR ) | 
						
							| 73 | 44 | ad2antlr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> j e. RR ) | 
						
							| 74 |  | 2re |  |-  2 e. RR | 
						
							| 75 |  | 2pos |  |-  0 < 2 | 
						
							| 76 | 74 75 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 77 | 76 | a1i |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 78 |  | lemul2 |  |-  ( ( ( M + 1 ) e. RR /\ j e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( M + 1 ) <_ j <-> ( 2 x. ( M + 1 ) ) <_ ( 2 x. j ) ) ) | 
						
							| 79 | 72 73 77 78 | syl3anc |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( M + 1 ) <_ j <-> ( 2 x. ( M + 1 ) ) <_ ( 2 x. j ) ) ) | 
						
							| 80 | 69 79 | mpbid |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 2 x. ( M + 1 ) ) <_ ( 2 x. j ) ) | 
						
							| 81 | 66 80 | eqbrtrrd |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( N + 1 ) <_ ( 2 x. j ) ) | 
						
							| 82 | 20 | nnzd |  |-  ( M e. NN -> N e. ZZ ) | 
						
							| 83 | 82 | ad2antrr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> N e. ZZ ) | 
						
							| 84 |  | zltp1le |  |-  ( ( N e. ZZ /\ ( 2 x. j ) e. ZZ ) -> ( N < ( 2 x. j ) <-> ( N + 1 ) <_ ( 2 x. j ) ) ) | 
						
							| 85 | 83 52 84 | syl2anc |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( N < ( 2 x. j ) <-> ( N + 1 ) <_ ( 2 x. j ) ) ) | 
						
							| 86 | 81 85 | mpbird |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> N < ( 2 x. j ) ) | 
						
							| 87 | 86 | olcd |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( 2 x. j ) < 0 \/ N < ( 2 x. j ) ) ) | 
						
							| 88 |  | bcval4 |  |-  ( ( N e. NN0 /\ ( 2 x. j ) e. ZZ /\ ( ( 2 x. j ) < 0 \/ N < ( 2 x. j ) ) ) -> ( N _C ( 2 x. j ) ) = 0 ) | 
						
							| 89 | 48 52 87 88 | syl3anc |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( N _C ( 2 x. j ) ) = 0 ) | 
						
							| 90 | 89 | oveq1d |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) = ( 0 x. ( -u 1 ^ ( M - j ) ) ) ) | 
						
							| 91 |  | zsubcl |  |-  ( ( M e. ZZ /\ j e. ZZ ) -> ( M - j ) e. ZZ ) | 
						
							| 92 | 31 49 91 | syl2an |  |-  ( ( M e. NN /\ j e. NN0 ) -> ( M - j ) e. ZZ ) | 
						
							| 93 |  | expclz |  |-  ( ( -u 1 e. CC /\ -u 1 =/= 0 /\ ( M - j ) e. ZZ ) -> ( -u 1 ^ ( M - j ) ) e. CC ) | 
						
							| 94 | 29 30 92 93 | mp3an12i |  |-  ( ( M e. NN /\ j e. NN0 ) -> ( -u 1 ^ ( M - j ) ) e. CC ) | 
						
							| 95 | 94 | adantr |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( -u 1 ^ ( M - j ) ) e. CC ) | 
						
							| 96 | 95 | mul02d |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( 0 x. ( -u 1 ^ ( M - j ) ) ) = 0 ) | 
						
							| 97 | 47 90 96 | 3eqtrd |  |-  ( ( ( M e. NN /\ j e. NN0 ) /\ M < j ) -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = 0 ) | 
						
							| 98 | 97 | ex |  |-  ( ( M e. NN /\ j e. NN0 ) -> ( M < j -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = 0 ) ) | 
						
							| 99 | 46 98 | sylbird |  |-  ( ( M e. NN /\ j e. NN0 ) -> ( -. j <_ M -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) = 0 ) ) | 
						
							| 100 | 99 | necon1ad |  |-  ( ( M e. NN /\ j e. NN0 ) -> ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) =/= 0 -> j <_ M ) ) | 
						
							| 101 | 100 | ralrimiva |  |-  ( M e. NN -> A. j e. NN0 ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) =/= 0 -> j <_ M ) ) | 
						
							| 102 |  | plyco0 |  |-  ( ( M e. NN0 /\ ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) : NN0 --> CC ) -> ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. j e. NN0 ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) =/= 0 -> j <_ M ) ) ) | 
						
							| 103 | 4 37 102 | syl2anc |  |-  ( M e. NN -> ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } <-> A. j e. NN0 ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) =/= 0 -> j <_ M ) ) ) | 
						
							| 104 | 101 103 | mpbird |  |-  ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) " ( ZZ>= ` ( M + 1 ) ) ) = { 0 } ) | 
						
							| 105 | 14 | oveq1d |  |-  ( j e. ( 0 ... M ) -> ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) = ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) | 
						
							| 106 | 105 | sumeq2i |  |-  sum_ j e. ( 0 ... M ) ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) = sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) | 
						
							| 107 | 106 | mpteq2i |  |-  ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) ) = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) | 
						
							| 108 | 2 107 | eqtr4i |  |-  P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) ) | 
						
							| 109 | 108 | a1i |  |-  ( M e. NN -> P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` j ) x. ( t ^ j ) ) ) ) | 
						
							| 110 |  | oveq2 |  |-  ( n = M -> ( 2 x. n ) = ( 2 x. M ) ) | 
						
							| 111 | 110 | oveq2d |  |-  ( n = M -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. M ) ) ) | 
						
							| 112 |  | oveq2 |  |-  ( n = M -> ( M - n ) = ( M - M ) ) | 
						
							| 113 | 112 | oveq2d |  |-  ( n = M -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - M ) ) ) | 
						
							| 114 | 111 113 | oveq12d |  |-  ( n = M -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) | 
						
							| 115 |  | ovex |  |-  ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) e. _V | 
						
							| 116 | 114 11 115 | fvmpt |  |-  ( M e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) | 
						
							| 117 | 4 116 | syl |  |-  ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) | 
						
							| 118 | 57 | subidd |  |-  ( M e. NN -> ( M - M ) = 0 ) | 
						
							| 119 | 118 | oveq2d |  |-  ( M e. NN -> ( -u 1 ^ ( M - M ) ) = ( -u 1 ^ 0 ) ) | 
						
							| 120 |  | exp0 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) | 
						
							| 121 | 29 120 | ax-mp |  |-  ( -u 1 ^ 0 ) = 1 | 
						
							| 122 | 119 121 | eqtrdi |  |-  ( M e. NN -> ( -u 1 ^ ( M - M ) ) = 1 ) | 
						
							| 123 | 122 | oveq2d |  |-  ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) = ( ( N _C ( 2 x. M ) ) x. 1 ) ) | 
						
							| 124 | 18 | nnred |  |-  ( M e. NN -> ( 2 x. M ) e. RR ) | 
						
							| 125 | 124 | lep1d |  |-  ( M e. NN -> ( 2 x. M ) <_ ( ( 2 x. M ) + 1 ) ) | 
						
							| 126 | 125 1 | breqtrrdi |  |-  ( M e. NN -> ( 2 x. M ) <_ N ) | 
						
							| 127 | 18 | nnnn0d |  |-  ( M e. NN -> ( 2 x. M ) e. NN0 ) | 
						
							| 128 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 129 | 127 128 | eleqtrdi |  |-  ( M e. NN -> ( 2 x. M ) e. ( ZZ>= ` 0 ) ) | 
						
							| 130 |  | elfz5 |  |-  ( ( ( 2 x. M ) e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( ( 2 x. M ) e. ( 0 ... N ) <-> ( 2 x. M ) <_ N ) ) | 
						
							| 131 | 129 82 130 | syl2anc |  |-  ( M e. NN -> ( ( 2 x. M ) e. ( 0 ... N ) <-> ( 2 x. M ) <_ N ) ) | 
						
							| 132 | 126 131 | mpbird |  |-  ( M e. NN -> ( 2 x. M ) e. ( 0 ... N ) ) | 
						
							| 133 |  | bccl2 |  |-  ( ( 2 x. M ) e. ( 0 ... N ) -> ( N _C ( 2 x. M ) ) e. NN ) | 
						
							| 134 | 132 133 | syl |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) e. NN ) | 
						
							| 135 | 134 | nncnd |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) e. CC ) | 
						
							| 136 | 135 | mulridd |  |-  ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. 1 ) = ( N _C ( 2 x. M ) ) ) | 
						
							| 137 | 117 123 136 | 3eqtrd |  |-  ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( N _C ( 2 x. M ) ) ) | 
						
							| 138 | 134 | nnne0d |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) =/= 0 ) | 
						
							| 139 | 137 138 | eqnetrd |  |-  ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) =/= 0 ) | 
						
							| 140 | 42 4 37 104 109 139 | dgreq |  |-  ( M e. NN -> ( deg ` P ) = M ) | 
						
							| 141 | 42 4 37 104 109 | coeeq |  |-  ( M e. NN -> ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) | 
						
							| 142 | 42 140 141 | 3jca |  |-  ( M e. NN -> ( P e. ( Poly ` CC ) /\ ( deg ` P ) = M /\ ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) ) |