Step |
Hyp |
Ref |
Expression |
1 |
|
basel.n |
|
2 |
|
basel.p |
|
3 |
|
ssidd |
|
4 |
|
nnnn0 |
|
5 |
|
elfznn0 |
|
6 |
|
oveq2 |
|
7 |
6
|
oveq2d |
|
8 |
|
oveq2 |
|
9 |
8
|
oveq2d |
|
10 |
7 9
|
oveq12d |
|
11 |
|
eqid |
|
12 |
|
ovex |
|
13 |
10 11 12
|
fvmpt |
|
14 |
5 13
|
syl |
|
15 |
14
|
adantl |
|
16 |
|
2nn |
|
17 |
|
nnmulcl |
|
18 |
16 17
|
mpan |
|
19 |
18
|
peano2nnd |
|
20 |
1 19
|
eqeltrid |
|
21 |
20
|
nnnn0d |
|
22 |
|
2z |
|
23 |
|
nn0z |
|
24 |
|
zmulcl |
|
25 |
22 23 24
|
sylancr |
|
26 |
|
bccl |
|
27 |
21 25 26
|
syl2an |
|
28 |
27
|
nn0cnd |
|
29 |
|
neg1cn |
|
30 |
|
neg1ne0 |
|
31 |
|
nnz |
|
32 |
|
zsubcl |
|
33 |
31 23 32
|
syl2an |
|
34 |
|
expclz |
|
35 |
29 30 33 34
|
mp3an12i |
|
36 |
28 35
|
mulcld |
|
37 |
36
|
fmpttd |
|
38 |
|
ffvelrn |
|
39 |
37 5 38
|
syl2an |
|
40 |
15 39
|
eqeltrrd |
|
41 |
3 4 40
|
elplyd |
|
42 |
2 41
|
eqeltrid |
|
43 |
|
nnre |
|
44 |
|
nn0re |
|
45 |
|
ltnle |
|
46 |
43 44 45
|
syl2an |
|
47 |
13
|
ad2antlr |
|
48 |
21
|
ad2antrr |
|
49 |
|
nn0z |
|
50 |
49
|
ad2antlr |
|
51 |
|
zmulcl |
|
52 |
22 50 51
|
sylancr |
|
53 |
|
ax-1cn |
|
54 |
53
|
2timesi |
|
55 |
54
|
oveq2i |
|
56 |
|
2cnd |
|
57 |
|
nncn |
|
58 |
57
|
ad2antrr |
|
59 |
53
|
a1i |
|
60 |
56 58 59
|
adddid |
|
61 |
1
|
oveq1i |
|
62 |
18
|
ad2antrr |
|
63 |
62
|
nncnd |
|
64 |
63 59 59
|
addassd |
|
65 |
61 64
|
eqtrid |
|
66 |
55 60 65
|
3eqtr4a |
|
67 |
|
zltp1le |
|
68 |
31 49 67
|
syl2an |
|
69 |
68
|
biimpa |
|
70 |
43
|
ad2antrr |
|
71 |
|
peano2re |
|
72 |
70 71
|
syl |
|
73 |
44
|
ad2antlr |
|
74 |
|
2re |
|
75 |
|
2pos |
|
76 |
74 75
|
pm3.2i |
|
77 |
76
|
a1i |
|
78 |
|
lemul2 |
|
79 |
72 73 77 78
|
syl3anc |
|
80 |
69 79
|
mpbid |
|
81 |
66 80
|
eqbrtrrd |
|
82 |
20
|
nnzd |
|
83 |
82
|
ad2antrr |
|
84 |
|
zltp1le |
|
85 |
83 52 84
|
syl2anc |
|
86 |
81 85
|
mpbird |
|
87 |
86
|
olcd |
|
88 |
|
bcval4 |
|
89 |
48 52 87 88
|
syl3anc |
|
90 |
89
|
oveq1d |
|
91 |
|
zsubcl |
|
92 |
31 49 91
|
syl2an |
|
93 |
|
expclz |
|
94 |
29 30 92 93
|
mp3an12i |
|
95 |
94
|
adantr |
|
96 |
95
|
mul02d |
|
97 |
47 90 96
|
3eqtrd |
|
98 |
97
|
ex |
|
99 |
46 98
|
sylbird |
|
100 |
99
|
necon1ad |
|
101 |
100
|
ralrimiva |
|
102 |
|
plyco0 |
|
103 |
4 37 102
|
syl2anc |
|
104 |
101 103
|
mpbird |
|
105 |
14
|
oveq1d |
|
106 |
105
|
sumeq2i |
|
107 |
106
|
mpteq2i |
|
108 |
2 107
|
eqtr4i |
|
109 |
108
|
a1i |
|
110 |
|
oveq2 |
|
111 |
110
|
oveq2d |
|
112 |
|
oveq2 |
|
113 |
112
|
oveq2d |
|
114 |
111 113
|
oveq12d |
|
115 |
|
ovex |
|
116 |
114 11 115
|
fvmpt |
|
117 |
4 116
|
syl |
|
118 |
57
|
subidd |
|
119 |
118
|
oveq2d |
|
120 |
|
exp0 |
|
121 |
29 120
|
ax-mp |
|
122 |
119 121
|
eqtrdi |
|
123 |
122
|
oveq2d |
|
124 |
18
|
nnred |
|
125 |
124
|
lep1d |
|
126 |
125 1
|
breqtrrdi |
|
127 |
18
|
nnnn0d |
|
128 |
|
nn0uz |
|
129 |
127 128
|
eleqtrdi |
|
130 |
|
elfz5 |
|
131 |
129 82 130
|
syl2anc |
|
132 |
126 131
|
mpbird |
|
133 |
|
bccl2 |
|
134 |
132 133
|
syl |
|
135 |
134
|
nncnd |
|
136 |
135
|
mulid1d |
|
137 |
117 123 136
|
3eqtrd |
|
138 |
134
|
nnne0d |
|
139 |
137 138
|
eqnetrd |
|
140 |
42 4 37 104 109 139
|
dgreq |
|
141 |
42 4 37 104 109
|
coeeq |
|
142 |
42 140 141
|
3jca |
|