Metamath Proof Explorer


Theorem basellem2

Description: Lemma for basel . Show that P is a polynomial of degree M , and compute its coefficient function. (Contributed by Mario Carneiro, 30-Jul-2014)

Ref Expression
Hypotheses basel.n N = 2 M + 1
basel.p P = t j = 0 M ( N 2 j ) 1 M j t j
Assertion basellem2 M P Poly deg P = M coeff P = n 0 ( N 2 n ) 1 M n

Proof

Step Hyp Ref Expression
1 basel.n N = 2 M + 1
2 basel.p P = t j = 0 M ( N 2 j ) 1 M j t j
3 ssidd M
4 nnnn0 M M 0
5 elfznn0 j 0 M j 0
6 oveq2 n = j 2 n = 2 j
7 6 oveq2d n = j ( N 2 n ) = ( N 2 j )
8 oveq2 n = j M n = M j
9 8 oveq2d n = j 1 M n = 1 M j
10 7 9 oveq12d n = j ( N 2 n ) 1 M n = ( N 2 j ) 1 M j
11 eqid n 0 ( N 2 n ) 1 M n = n 0 ( N 2 n ) 1 M n
12 ovex ( N 2 j ) 1 M j V
13 10 11 12 fvmpt j 0 n 0 ( N 2 n ) 1 M n j = ( N 2 j ) 1 M j
14 5 13 syl j 0 M n 0 ( N 2 n ) 1 M n j = ( N 2 j ) 1 M j
15 14 adantl M j 0 M n 0 ( N 2 n ) 1 M n j = ( N 2 j ) 1 M j
16 2nn 2
17 nnmulcl 2 M 2 M
18 16 17 mpan M 2 M
19 18 peano2nnd M 2 M + 1
20 1 19 eqeltrid M N
21 20 nnnn0d M N 0
22 2z 2
23 nn0z n 0 n
24 zmulcl 2 n 2 n
25 22 23 24 sylancr n 0 2 n
26 bccl N 0 2 n ( N 2 n ) 0
27 21 25 26 syl2an M n 0 ( N 2 n ) 0
28 27 nn0cnd M n 0 ( N 2 n )
29 neg1cn 1
30 neg1ne0 1 0
31 nnz M M
32 zsubcl M n M n
33 31 23 32 syl2an M n 0 M n
34 expclz 1 1 0 M n 1 M n
35 29 30 33 34 mp3an12i M n 0 1 M n
36 28 35 mulcld M n 0 ( N 2 n ) 1 M n
37 36 fmpttd M n 0 ( N 2 n ) 1 M n : 0
38 ffvelrn n 0 ( N 2 n ) 1 M n : 0 j 0 n 0 ( N 2 n ) 1 M n j
39 37 5 38 syl2an M j 0 M n 0 ( N 2 n ) 1 M n j
40 15 39 eqeltrrd M j 0 M ( N 2 j ) 1 M j
41 3 4 40 elplyd M t j = 0 M ( N 2 j ) 1 M j t j Poly
42 2 41 eqeltrid M P Poly
43 nnre M M
44 nn0re j 0 j
45 ltnle M j M < j ¬ j M
46 43 44 45 syl2an M j 0 M < j ¬ j M
47 13 ad2antlr M j 0 M < j n 0 ( N 2 n ) 1 M n j = ( N 2 j ) 1 M j
48 21 ad2antrr M j 0 M < j N 0
49 nn0z j 0 j
50 49 ad2antlr M j 0 M < j j
51 zmulcl 2 j 2 j
52 22 50 51 sylancr M j 0 M < j 2 j
53 ax-1cn 1
54 53 2timesi 2 1 = 1 + 1
55 54 oveq2i 2 M + 2 1 = 2 M + 1 + 1
56 2cnd M j 0 M < j 2
57 nncn M M
58 57 ad2antrr M j 0 M < j M
59 53 a1i M j 0 M < j 1
60 56 58 59 adddid M j 0 M < j 2 M + 1 = 2 M + 2 1
61 1 oveq1i N + 1 = 2 M + 1 + 1
62 18 ad2antrr M j 0 M < j 2 M
63 62 nncnd M j 0 M < j 2 M
64 63 59 59 addassd M j 0 M < j 2 M + 1 + 1 = 2 M + 1 + 1
65 61 64 eqtrid M j 0 M < j N + 1 = 2 M + 1 + 1
66 55 60 65 3eqtr4a M j 0 M < j 2 M + 1 = N + 1
67 zltp1le M j M < j M + 1 j
68 31 49 67 syl2an M j 0 M < j M + 1 j
69 68 biimpa M j 0 M < j M + 1 j
70 43 ad2antrr M j 0 M < j M
71 peano2re M M + 1
72 70 71 syl M j 0 M < j M + 1
73 44 ad2antlr M j 0 M < j j
74 2re 2
75 2pos 0 < 2
76 74 75 pm3.2i 2 0 < 2
77 76 a1i M j 0 M < j 2 0 < 2
78 lemul2 M + 1 j 2 0 < 2 M + 1 j 2 M + 1 2 j
79 72 73 77 78 syl3anc M j 0 M < j M + 1 j 2 M + 1 2 j
80 69 79 mpbid M j 0 M < j 2 M + 1 2 j
81 66 80 eqbrtrrd M j 0 M < j N + 1 2 j
82 20 nnzd M N
83 82 ad2antrr M j 0 M < j N
84 zltp1le N 2 j N < 2 j N + 1 2 j
85 83 52 84 syl2anc M j 0 M < j N < 2 j N + 1 2 j
86 81 85 mpbird M j 0 M < j N < 2 j
87 86 olcd M j 0 M < j 2 j < 0 N < 2 j
88 bcval4 N 0 2 j 2 j < 0 N < 2 j ( N 2 j ) = 0
89 48 52 87 88 syl3anc M j 0 M < j ( N 2 j ) = 0
90 89 oveq1d M j 0 M < j ( N 2 j ) 1 M j = 0 1 M j
91 zsubcl M j M j
92 31 49 91 syl2an M j 0 M j
93 expclz 1 1 0 M j 1 M j
94 29 30 92 93 mp3an12i M j 0 1 M j
95 94 adantr M j 0 M < j 1 M j
96 95 mul02d M j 0 M < j 0 1 M j = 0
97 47 90 96 3eqtrd M j 0 M < j n 0 ( N 2 n ) 1 M n j = 0
98 97 ex M j 0 M < j n 0 ( N 2 n ) 1 M n j = 0
99 46 98 sylbird M j 0 ¬ j M n 0 ( N 2 n ) 1 M n j = 0
100 99 necon1ad M j 0 n 0 ( N 2 n ) 1 M n j 0 j M
101 100 ralrimiva M j 0 n 0 ( N 2 n ) 1 M n j 0 j M
102 plyco0 M 0 n 0 ( N 2 n ) 1 M n : 0 n 0 ( N 2 n ) 1 M n M + 1 = 0 j 0 n 0 ( N 2 n ) 1 M n j 0 j M
103 4 37 102 syl2anc M n 0 ( N 2 n ) 1 M n M + 1 = 0 j 0 n 0 ( N 2 n ) 1 M n j 0 j M
104 101 103 mpbird M n 0 ( N 2 n ) 1 M n M + 1 = 0
105 14 oveq1d j 0 M n 0 ( N 2 n ) 1 M n j t j = ( N 2 j ) 1 M j t j
106 105 sumeq2i j = 0 M n 0 ( N 2 n ) 1 M n j t j = j = 0 M ( N 2 j ) 1 M j t j
107 106 mpteq2i t j = 0 M n 0 ( N 2 n ) 1 M n j t j = t j = 0 M ( N 2 j ) 1 M j t j
108 2 107 eqtr4i P = t j = 0 M n 0 ( N 2 n ) 1 M n j t j
109 108 a1i M P = t j = 0 M n 0 ( N 2 n ) 1 M n j t j
110 oveq2 n = M 2 n = 2 M
111 110 oveq2d n = M ( N 2 n ) = ( N 2 M )
112 oveq2 n = M M n = M M
113 112 oveq2d n = M 1 M n = 1 M M
114 111 113 oveq12d n = M ( N 2 n ) 1 M n = ( N 2 M ) 1 M M
115 ovex ( N 2 M ) 1 M M V
116 114 11 115 fvmpt M 0 n 0 ( N 2 n ) 1 M n M = ( N 2 M ) 1 M M
117 4 116 syl M n 0 ( N 2 n ) 1 M n M = ( N 2 M ) 1 M M
118 57 subidd M M M = 0
119 118 oveq2d M 1 M M = 1 0
120 exp0 1 1 0 = 1
121 29 120 ax-mp 1 0 = 1
122 119 121 eqtrdi M 1 M M = 1
123 122 oveq2d M ( N 2 M ) 1 M M = ( N 2 M ) 1
124 18 nnred M 2 M
125 124 lep1d M 2 M 2 M + 1
126 125 1 breqtrrdi M 2 M N
127 18 nnnn0d M 2 M 0
128 nn0uz 0 = 0
129 127 128 eleqtrdi M 2 M 0
130 elfz5 2 M 0 N 2 M 0 N 2 M N
131 129 82 130 syl2anc M 2 M 0 N 2 M N
132 126 131 mpbird M 2 M 0 N
133 bccl2 2 M 0 N ( N 2 M )
134 132 133 syl M ( N 2 M )
135 134 nncnd M ( N 2 M )
136 135 mulid1d M ( N 2 M ) 1 = ( N 2 M )
137 117 123 136 3eqtrd M n 0 ( N 2 n ) 1 M n M = ( N 2 M )
138 134 nnne0d M ( N 2 M ) 0
139 137 138 eqnetrd M n 0 ( N 2 n ) 1 M n M 0
140 42 4 37 104 109 139 dgreq M deg P = M
141 42 4 37 104 109 coeeq M coeff P = n 0 ( N 2 n ) 1 M n
142 42 140 141 3jca M P Poly deg P = M coeff P = n 0 ( N 2 n ) 1 M n