| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dgreq.1 |  |-  ( ph -> F e. ( Poly ` S ) ) | 
						
							| 2 |  | dgreq.2 |  |-  ( ph -> N e. NN0 ) | 
						
							| 3 |  | dgreq.3 |  |-  ( ph -> A : NN0 --> CC ) | 
						
							| 4 |  | dgreq.4 |  |-  ( ph -> ( A " ( ZZ>= ` ( N + 1 ) ) ) = { 0 } ) | 
						
							| 5 |  | dgreq.5 |  |-  ( ph -> F = ( z e. CC |-> sum_ k e. ( 0 ... N ) ( ( A ` k ) x. ( z ^ k ) ) ) ) | 
						
							| 6 |  | dgreq.6 |  |-  ( ph -> ( A ` N ) =/= 0 ) | 
						
							| 7 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 8 |  | ffvelcdm |  |-  ( ( A : NN0 --> CC /\ k e. NN0 ) -> ( A ` k ) e. CC ) | 
						
							| 9 | 3 7 8 | syl2an |  |-  ( ( ph /\ k e. ( 0 ... N ) ) -> ( A ` k ) e. CC ) | 
						
							| 10 | 1 2 9 5 | dgrle |  |-  ( ph -> ( deg ` F ) <_ N ) | 
						
							| 11 | 1 2 3 4 5 | coeeq |  |-  ( ph -> ( coeff ` F ) = A ) | 
						
							| 12 | 11 | fveq1d |  |-  ( ph -> ( ( coeff ` F ) ` N ) = ( A ` N ) ) | 
						
							| 13 | 12 6 | eqnetrd |  |-  ( ph -> ( ( coeff ` F ) ` N ) =/= 0 ) | 
						
							| 14 |  | eqid |  |-  ( coeff ` F ) = ( coeff ` F ) | 
						
							| 15 |  | eqid |  |-  ( deg ` F ) = ( deg ` F ) | 
						
							| 16 | 14 15 | dgrub |  |-  ( ( F e. ( Poly ` S ) /\ N e. NN0 /\ ( ( coeff ` F ) ` N ) =/= 0 ) -> N <_ ( deg ` F ) ) | 
						
							| 17 | 1 2 13 16 | syl3anc |  |-  ( ph -> N <_ ( deg ` F ) ) | 
						
							| 18 |  | dgrcl |  |-  ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) | 
						
							| 19 | 1 18 | syl |  |-  ( ph -> ( deg ` F ) e. NN0 ) | 
						
							| 20 | 19 | nn0red |  |-  ( ph -> ( deg ` F ) e. RR ) | 
						
							| 21 | 2 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 22 | 20 21 | letri3d |  |-  ( ph -> ( ( deg ` F ) = N <-> ( ( deg ` F ) <_ N /\ N <_ ( deg ` F ) ) ) ) | 
						
							| 23 | 10 17 22 | mpbir2and |  |-  ( ph -> ( deg ` F ) = N ) |