| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elioore |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> A e. RR ) |
| 2 |
1
|
recnd |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> A e. CC ) |
| 3 |
1
|
recoscld |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( cos ` A ) e. RR ) |
| 4 |
|
sincosq1sgn |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( 0 < ( sin ` A ) /\ 0 < ( cos ` A ) ) ) |
| 5 |
4
|
simprd |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> 0 < ( cos ` A ) ) |
| 6 |
3 5
|
elrpd |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( cos ` A ) e. RR+ ) |
| 7 |
6
|
rpne0d |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( cos ` A ) =/= 0 ) |
| 8 |
|
tanval |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 9 |
2 7 8
|
syl2anc |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` A ) = ( ( sin ` A ) / ( cos ` A ) ) ) |
| 10 |
1
|
resincld |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( sin ` A ) e. RR ) |
| 11 |
4
|
simpld |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> 0 < ( sin ` A ) ) |
| 12 |
10 11
|
elrpd |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( sin ` A ) e. RR+ ) |
| 13 |
12 6
|
rpdivcld |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( ( sin ` A ) / ( cos ` A ) ) e. RR+ ) |
| 14 |
9 13
|
eqeltrd |
|- ( A e. ( 0 (,) ( _pi / 2 ) ) -> ( tan ` A ) e. RR+ ) |