Metamath Proof Explorer


Theorem tanrpcl

Description: Positive real closure of the tangent function. (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Assertion tanrpcl A0π2tanA+

Proof

Step Hyp Ref Expression
1 elioore A0π2A
2 1 recnd A0π2A
3 1 recoscld A0π2cosA
4 sincosq1sgn A0π20<sinA0<cosA
5 4 simprd A0π20<cosA
6 3 5 elrpd A0π2cosA+
7 6 rpne0d A0π2cosA0
8 tanval AcosA0tanA=sinAcosA
9 2 7 8 syl2anc A0π2tanA=sinAcosA
10 1 resincld A0π2sinA
11 4 simpld A0π20<sinA
12 10 11 elrpd A0π2sinA+
13 12 6 rpdivcld A0π2sinAcosA+
14 9 13 eqeltrd A0π2tanA+