Metamath Proof Explorer


Theorem tangtx

Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014)

Ref Expression
Assertion tangtx A0π2A<tanA

Proof

Step Hyp Ref Expression
1 elioore A0π2A
2 1 recoscld A0π2cosA
3 1 2 remulcld A0π2AcosA
4 1re 1
5 rehalfcl AA2
6 1 5 syl A0π2A2
7 6 resqcld A0π2A22
8 3nn 3
9 nndivre A223A223
10 7 8 9 sylancl A0π2A223
11 resubcl 1A2231A223
12 4 10 11 sylancr A0π21A223
13 1 12 remulcld A0π2A1A223
14 2re 2
15 remulcl 2A2232A223
16 14 10 15 sylancr A0π22A223
17 resubcl 12A22312A223
18 4 16 17 sylancr A0π212A223
19 13 18 remulcld A0π2A1A22312A223
20 1 resincld A0π2sinA
21 12 resqcld A0π21A2232
22 remulcl 21A223221A2232
23 14 21 22 sylancr A0π221A2232
24 resubcl 21A2232121A22321
25 23 4 24 sylancl A0π221A22321
26 12 18 remulcld A0π21A22312A223
27 1 recnd A0π2A
28 2cn 2
29 28 a1i A0π22
30 2ne0 20
31 30 a1i A0π220
32 27 29 31 divcan2d A0π22A2=A
33 32 fveq2d A0π2cos2A2=cosA
34 6 recnd A0π2A2
35 cos2t A2cos2A2=2cosA221
36 34 35 syl A0π2cos2A2=2cosA221
37 33 36 eqtr3d A0π2cosA=2cosA221
38 6 recoscld A0π2cosA2
39 38 resqcld A0π2cosA22
40 remulcl 2cosA222cosA22
41 14 39 40 sylancr A0π22cosA22
42 4 a1i A0π21
43 14 a1i A0π22
44 eliooord A0π20<AA<π2
45 44 simpld A0π20<A
46 2pos 0<2
47 46 a1i A0π20<2
48 1 43 45 47 divgt0d A0π20<A2
49 pire π
50 rehalfcl ππ2
51 49 50 mp1i A0π2π2
52 44 simprd A0π2A<π2
53 pigt2lt4 2<ππ<4
54 53 simpri π<4
55 2t2e4 22=4
56 54 55 breqtrri π<22
57 14 46 pm3.2i 20<2
58 ltdivmul π220<2π2<2π<22
59 49 14 57 58 mp3an π2<2π<22
60 56 59 mpbir π2<2
61 60 a1i A0π2π2<2
62 1 51 43 52 61 lttrd A0π2A<2
63 28 mullidi 12=2
64 62 63 breqtrrdi A0π2A<12
65 ltdivmul2 A120<2A2<1A<12
66 1 42 43 47 65 syl112anc A0π2A2<1A<12
67 64 66 mpbird A0π2A2<1
68 6 42 67 ltled A0π2A21
69 0xr 0*
70 elioc2 0*1A201A20<A2A21
71 69 4 70 mp2an A201A20<A2A21
72 6 48 68 71 syl3anbrc A0π2A201
73 cos01bnd A20112A223<cosA2cosA2<1A223
74 72 73 syl A0π212A223<cosA2cosA2<1A223
75 74 simprd A0π2cosA2<1A223
76 cos01gt0 A2010<cosA2
77 72 76 syl A0π20<cosA2
78 0re 0
79 ltle 0cosA20<cosA20cosA2
80 78 38 79 sylancr A0π20<cosA20cosA2
81 77 80 mpd A0π20cosA2
82 78 a1i A0π20
83 82 38 12 77 75 lttrd A0π20<1A223
84 82 12 83 ltled A0π201A223
85 38 12 81 84 lt2sqd A0π2cosA2<1A223cosA22<1A2232
86 75 85 mpbid A0π2cosA22<1A2232
87 ltmul2 cosA221A223220<2cosA22<1A22322cosA22<21A2232
88 39 21 43 47 87 syl112anc A0π2cosA22<1A22322cosA22<21A2232
89 86 88 mpbid A0π22cosA22<21A2232
90 41 23 42 89 ltsub1dd A0π22cosA221<21A22321
91 37 90 eqbrtrd A0π2cosA<21A22321
92 3re 3
93 remulcl 3A2233A223
94 92 10 93 sylancr A0π23A223
95 4re 4
96 remulcl 4A2234A223
97 95 10 96 sylancr A0π24A223
98 10 resqcld A0π2A2232
99 remulcl 2A22322A2232
100 14 98 99 sylancr A0π22A2232
101 readdcl 12A22321+2A2232
102 4 100 101 sylancr A0π21+2A2232
103 3lt4 3<4
104 92 a1i A0π23
105 95 a1i A0π24
106 48 gt0ne0d A0π2A20
107 6 106 sqgt0d A0π20<A22
108 3pos 0<3
109 108 a1i A0π20<3
110 7 104 107 109 divgt0d A0π20<A223
111 ltmul1 34A2230<A2233<43A223<4A223
112 104 105 10 110 111 syl112anc A0π23<43A223<4A223
113 103 112 mpbii A0π23A223<4A223
114 94 97 102 113 ltsub2dd A0π21+2A2232-4A223<1+2A2232-3A223
115 42 recnd A0π21
116 ax-1cn 1
117 100 recnd A0π22A2232
118 addcl 12A22321+2A2232
119 116 117 118 sylancr A0π21+2A2232
120 97 recnd A0π24A223
121 119 120 subcld A0π21+2A2232-4A223
122 sq1 12=1
123 122 a1i A0π212=1
124 10 recnd A0π2A223
125 124 mullidd A0π21A223=A223
126 125 oveq2d A0π221A223=2A223
127 123 126 oveq12d A0π21221A223=12A223
128 127 oveq1d A0π212-21A223+A2232=1-2A223+A2232
129 binom2sub 1A2231A2232=12-21A223+A2232
130 116 124 129 sylancr A0π21A2232=12-21A223+A2232
131 98 recnd A0π2A2232
132 16 recnd A0π22A223
133 115 131 132 addsubd A0π21+A2232-2A223=1-2A223+A2232
134 128 130 133 3eqtr4d A0π21A2232=1+A2232-2A223
135 134 oveq2d A0π221A2232=21+A2232-2A223
136 addcl 1A22321+A2232
137 116 131 136 sylancr A0π21+A2232
138 29 137 132 subdid A0π221+A2232-2A223=21+A223222A223
139 29 115 131 adddid A0π221+A2232=21+2A2232
140 116 2timesi 21=1+1
141 140 oveq1i 21+2A2232=1+1+2A2232
142 115 115 117 addassd A0π21+1+2A2232=1+1+2A2232
143 141 142 eqtrid A0π221+2A2232=1+1+2A2232
144 139 143 eqtrd A0π221+A2232=1+1+2A2232
145 29 29 124 mulassd A0π222A223=22A223
146 55 oveq1i 22A223=4A223
147 145 146 eqtr3di A0π222A223=4A223
148 144 147 oveq12d A0π221+A223222A223=1+1+2A2232-4A223
149 115 119 120 148 assraddsubd A0π221+A223222A223=1+1+2A2232-4A223
150 135 138 149 3eqtrd A0π221A2232=1+1+2A2232-4A223
151 115 121 150 mvrladdd A0π221A22321=1+2A2232-4A223
152 subcl 1A2231A223
153 116 124 152 sylancr A0π21A223
154 153 115 132 subdid A0π21A22312A223=1A22311A2232A223
155 153 mulridd A0π21A2231=1A223
156 115 124 132 subdird A0π21A2232A223=12A223A2232A223
157 132 mullidd A0π212A223=2A223
158 124 29 124 mul12d A0π2A2232A223=2A223A223
159 124 sqvald A0π2A2232=A223A223
160 159 oveq2d A0π22A2232=2A223A223
161 158 160 eqtr4d A0π2A2232A223=2A2232
162 157 161 oveq12d A0π212A223A2232A223=2A2232A2232
163 156 162 eqtrd A0π21A2232A223=2A2232A2232
164 155 163 oveq12d A0π21A22311A2232A223=1-A223-2A2232A2232
165 115 124 132 117 subadd4d A0π21-A223-2A2232A2232=1+2A2232-A223+2A223
166 df-3 3=2+1
167 28 116 addcomi 2+1=1+2
168 166 167 eqtri 3=1+2
169 168 oveq1i 3A223=1+2A223
170 125 oveq1d A0π21A223+2A223=A223+2A223
171 115 124 29 170 joinlmuladdmuld A0π21+2A223=A223+2A223
172 169 171 eqtrid A0π23A223=A223+2A223
173 172 oveq2d A0π21+2A2232-3A223=1+2A2232-A223+2A223
174 165 173 eqtr4d A0π21-A223-2A2232A2232=1+2A2232-3A223
175 154 164 174 3eqtrd A0π21A22312A223=1+2A2232-3A223
176 114 151 175 3brtr4d A0π221A22321<1A22312A223
177 2 25 26 91 176 lttrd A0π2cosA<1A22312A223
178 ltmul2 cosA1A22312A223A0<AcosA<1A22312A223AcosA<A1A22312A223
179 2 26 1 45 178 syl112anc A0π2cosA<1A22312A223AcosA<A1A22312A223
180 177 179 mpbid A0π2AcosA<A1A22312A223
181 18 recnd A0π212A223
182 27 153 181 mulassd A0π2A1A22312A223=A1A22312A223
183 180 182 breqtrrd A0π2AcosA<A1A22312A223
184 13 38 remulcld A0π2A1A223cosA2
185 74 simpld A0π212A223<cosA2
186 1 12 45 83 mulgt0d A0π20<A1A223
187 ltmul2 12A223cosA2A1A2230<A1A22312A223<cosA2A1A22312A223<A1A223cosA2
188 18 38 13 186 187 syl112anc A0π212A223<cosA2A1A22312A223<A1A223cosA2
189 185 188 mpbid A0π2A1A22312A223<A1A223cosA2
190 29 34 153 mulassd A0π22A21A223=2A21A223
191 32 oveq1d A0π22A21A223=A1A223
192 34 115 124 subdid A0π2A21A223=A21A2A223
193 34 mulridd A0π2A21=A2
194 166 oveq2i A23=A22+1
195 2nn0 20
196 expp1 A220A22+1=A22A2
197 34 195 196 sylancl A0π2A22+1=A22A2
198 194 197 eqtrid A0π2A23=A22A2
199 7 recnd A0π2A22
200 199 34 mulcomd A0π2A22A2=A2A22
201 198 200 eqtrd A0π2A23=A2A22
202 201 oveq1d A0π2A233=A2A223
203 3cn 3
204 203 a1i A0π23
205 3ne0 30
206 205 a1i A0π230
207 34 199 204 206 divassd A0π2A2A223=A2A223
208 202 207 eqtr2d A0π2A2A223=A233
209 193 208 oveq12d A0π2A21A2A223=A2A233
210 192 209 eqtrd A0π2A21A223=A2A233
211 210 oveq2d A0π22A21A223=2A2A233
212 190 191 211 3eqtr3d A0π2A1A223=2A2A233
213 sin01bnd A201A2A233<sinA2sinA2<A2
214 72 213 syl A0π2A2A233<sinA2sinA2<A2
215 214 simpld A0π2A2A233<sinA2
216 3nn0 30
217 reexpcl A230A23
218 6 216 217 sylancl A0π2A23
219 nndivre A233A233
220 218 8 219 sylancl A0π2A233
221 6 220 resubcld A0π2A2A233
222 6 resincld A0π2sinA2
223 ltmul2 A2A233sinA220<2A2A233<sinA22A2A233<2sinA2
224 221 222 43 47 223 syl112anc A0π2A2A233<sinA22A2A233<2sinA2
225 215 224 mpbid A0π22A2A233<2sinA2
226 212 225 eqbrtrd A0π2A1A223<2sinA2
227 remulcl 2sinA22sinA2
228 14 222 227 sylancr A0π22sinA2
229 ltmul1 A1A2232sinA2cosA20<cosA2A1A223<2sinA2A1A223cosA2<2sinA2cosA2
230 13 228 38 77 229 syl112anc A0π2A1A223<2sinA2A1A223cosA2<2sinA2cosA2
231 226 230 mpbid A0π2A1A223cosA2<2sinA2cosA2
232 222 recnd A0π2sinA2
233 38 recnd A0π2cosA2
234 29 232 233 mulassd A0π22sinA2cosA2=2sinA2cosA2
235 sin2t A2sin2A2=2sinA2cosA2
236 34 235 syl A0π2sin2A2=2sinA2cosA2
237 32 fveq2d A0π2sin2A2=sinA
238 234 236 237 3eqtr2rd A0π2sinA=2sinA2cosA2
239 231 238 breqtrrd A0π2A1A223cosA2<sinA
240 19 184 20 189 239 lttrd A0π2A1A22312A223<sinA
241 3 19 20 183 240 lttrd A0π2AcosA<sinA
242 sincosq1sgn A0π20<sinA0<cosA
243 242 simprd A0π20<cosA
244 ltmuldiv AsinAcosA0<cosAAcosA<sinAA<sinAcosA
245 1 20 2 243 244 syl112anc A0π2AcosA<sinAA<sinAcosA
246 241 245 mpbid A0π2A<sinAcosA
247 243 gt0ne0d A0π2cosA0
248 tanval AcosA0tanA=sinAcosA
249 27 247 248 syl2anc A0π2tanA=sinAcosA
250 246 249 breqtrrd A0π2A<tanA