| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.g |  |-  G = ( n e. NN |-> ( 1 / ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 2 |  | basel.f |  |-  F = seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) | 
						
							| 3 |  | basel.h |  |-  H = ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) | 
						
							| 4 |  | basel.j |  |-  J = ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) | 
						
							| 5 |  | basel.k |  |-  K = ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) | 
						
							| 6 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 7 |  | 1zzd |  |-  ( T. -> 1 e. ZZ ) | 
						
							| 8 |  | oveq1 |  |-  ( n = k -> ( n ^ -u 2 ) = ( k ^ -u 2 ) ) | 
						
							| 9 |  | eqid |  |-  ( n e. NN |-> ( n ^ -u 2 ) ) = ( n e. NN |-> ( n ^ -u 2 ) ) | 
						
							| 10 |  | ovex |  |-  ( k ^ -u 2 ) e. _V | 
						
							| 11 | 8 9 10 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) = ( k ^ -u 2 ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) = ( k ^ -u 2 ) ) | 
						
							| 13 |  | nnre |  |-  ( n e. NN -> n e. RR ) | 
						
							| 14 |  | nnne0 |  |-  ( n e. NN -> n =/= 0 ) | 
						
							| 15 |  | 2z |  |-  2 e. ZZ | 
						
							| 16 |  | znegcl |  |-  ( 2 e. ZZ -> -u 2 e. ZZ ) | 
						
							| 17 | 15 16 | ax-mp |  |-  -u 2 e. ZZ | 
						
							| 18 | 17 | a1i |  |-  ( n e. NN -> -u 2 e. ZZ ) | 
						
							| 19 | 13 14 18 | reexpclzd |  |-  ( n e. NN -> ( n ^ -u 2 ) e. RR ) | 
						
							| 20 | 19 | adantl |  |-  ( ( T. /\ n e. NN ) -> ( n ^ -u 2 ) e. RR ) | 
						
							| 21 | 20 9 | fmptd |  |-  ( T. -> ( n e. NN |-> ( n ^ -u 2 ) ) : NN --> RR ) | 
						
							| 22 | 21 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( n ^ -u 2 ) ) ` k ) e. RR ) | 
						
							| 23 | 12 22 | eqeltrrd |  |-  ( ( T. /\ k e. NN ) -> ( k ^ -u 2 ) e. RR ) | 
						
							| 24 | 23 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( k ^ -u 2 ) e. CC ) | 
						
							| 25 | 6 7 22 | serfre |  |-  ( T. -> seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) : NN --> RR ) | 
						
							| 26 | 2 | feq1i |  |-  ( F : NN --> RR <-> seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) : NN --> RR ) | 
						
							| 27 | 25 26 | sylibr |  |-  ( T. -> F : NN --> RR ) | 
						
							| 28 | 27 | ffvelcdmda |  |-  ( ( T. /\ n e. NN ) -> ( F ` n ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( ( T. /\ n e. NN ) -> ( F ` n ) e. CC ) | 
						
							| 30 |  | remulcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) | 
						
							| 31 | 30 | adantl |  |-  ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR ) | 
						
							| 32 |  | ovex |  |-  ( ( _pi ^ 2 ) / 6 ) e. _V | 
						
							| 33 | 32 | fconst |  |-  ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) : NN --> { ( ( _pi ^ 2 ) / 6 ) } | 
						
							| 34 |  | pire |  |-  _pi e. RR | 
						
							| 35 | 34 | resqcli |  |-  ( _pi ^ 2 ) e. RR | 
						
							| 36 |  | 6re |  |-  6 e. RR | 
						
							| 37 |  | 6nn |  |-  6 e. NN | 
						
							| 38 | 37 | nnne0i |  |-  6 =/= 0 | 
						
							| 39 | 35 36 38 | redivcli |  |-  ( ( _pi ^ 2 ) / 6 ) e. RR | 
						
							| 40 | 39 | a1i |  |-  ( T. -> ( ( _pi ^ 2 ) / 6 ) e. RR ) | 
						
							| 41 | 40 | snssd |  |-  ( T. -> { ( ( _pi ^ 2 ) / 6 ) } C_ RR ) | 
						
							| 42 |  | fss |  |-  ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) : NN --> { ( ( _pi ^ 2 ) / 6 ) } /\ { ( ( _pi ^ 2 ) / 6 ) } C_ RR ) -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) : NN --> RR ) | 
						
							| 43 | 33 41 42 | sylancr |  |-  ( T. -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) : NN --> RR ) | 
						
							| 44 |  | resubcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x - y ) e. RR ) | 
						
							| 45 | 44 | adantl |  |-  ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x - y ) e. RR ) | 
						
							| 46 |  | 1ex |  |-  1 e. _V | 
						
							| 47 | 46 | fconst |  |-  ( NN X. { 1 } ) : NN --> { 1 } | 
						
							| 48 |  | 1red |  |-  ( T. -> 1 e. RR ) | 
						
							| 49 | 48 | snssd |  |-  ( T. -> { 1 } C_ RR ) | 
						
							| 50 |  | fss |  |-  ( ( ( NN X. { 1 } ) : NN --> { 1 } /\ { 1 } C_ RR ) -> ( NN X. { 1 } ) : NN --> RR ) | 
						
							| 51 | 47 49 50 | sylancr |  |-  ( T. -> ( NN X. { 1 } ) : NN --> RR ) | 
						
							| 52 |  | 2nn |  |-  2 e. NN | 
						
							| 53 | 52 | a1i |  |-  ( T. -> 2 e. NN ) | 
						
							| 54 |  | nnmulcl |  |-  ( ( 2 e. NN /\ n e. NN ) -> ( 2 x. n ) e. NN ) | 
						
							| 55 | 53 54 | sylan |  |-  ( ( T. /\ n e. NN ) -> ( 2 x. n ) e. NN ) | 
						
							| 56 | 55 | peano2nnd |  |-  ( ( T. /\ n e. NN ) -> ( ( 2 x. n ) + 1 ) e. NN ) | 
						
							| 57 | 56 | nnrecred |  |-  ( ( T. /\ n e. NN ) -> ( 1 / ( ( 2 x. n ) + 1 ) ) e. RR ) | 
						
							| 58 | 57 1 | fmptd |  |-  ( T. -> G : NN --> RR ) | 
						
							| 59 |  | nnex |  |-  NN e. _V | 
						
							| 60 | 59 | a1i |  |-  ( T. -> NN e. _V ) | 
						
							| 61 |  | inidm |  |-  ( NN i^i NN ) = NN | 
						
							| 62 | 45 51 58 60 60 61 | off |  |-  ( T. -> ( ( NN X. { 1 } ) oF - G ) : NN --> RR ) | 
						
							| 63 | 31 43 62 60 60 61 | off |  |-  ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) : NN --> RR ) | 
						
							| 64 | 3 | feq1i |  |-  ( H : NN --> RR <-> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) : NN --> RR ) | 
						
							| 65 | 63 64 | sylibr |  |-  ( T. -> H : NN --> RR ) | 
						
							| 66 |  | readdcl |  |-  ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) | 
						
							| 67 | 66 | adantl |  |-  ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x + y ) e. RR ) | 
						
							| 68 |  | negex |  |-  -u 2 e. _V | 
						
							| 69 | 68 | fconst |  |-  ( NN X. { -u 2 } ) : NN --> { -u 2 } | 
						
							| 70 | 17 | zrei |  |-  -u 2 e. RR | 
						
							| 71 | 70 | a1i |  |-  ( T. -> -u 2 e. RR ) | 
						
							| 72 | 71 | snssd |  |-  ( T. -> { -u 2 } C_ RR ) | 
						
							| 73 |  | fss |  |-  ( ( ( NN X. { -u 2 } ) : NN --> { -u 2 } /\ { -u 2 } C_ RR ) -> ( NN X. { -u 2 } ) : NN --> RR ) | 
						
							| 74 | 69 72 73 | sylancr |  |-  ( T. -> ( NN X. { -u 2 } ) : NN --> RR ) | 
						
							| 75 | 31 74 58 60 60 61 | off |  |-  ( T. -> ( ( NN X. { -u 2 } ) oF x. G ) : NN --> RR ) | 
						
							| 76 | 67 51 75 60 60 61 | off |  |-  ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) : NN --> RR ) | 
						
							| 77 | 31 65 76 60 60 61 | off |  |-  ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) : NN --> RR ) | 
						
							| 78 | 4 | feq1i |  |-  ( J : NN --> RR <-> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) : NN --> RR ) | 
						
							| 79 | 77 78 | sylibr |  |-  ( T. -> J : NN --> RR ) | 
						
							| 80 | 79 | ffvelcdmda |  |-  ( ( T. /\ n e. NN ) -> ( J ` n ) e. RR ) | 
						
							| 81 | 80 | recnd |  |-  ( ( T. /\ n e. NN ) -> ( J ` n ) e. CC ) | 
						
							| 82 | 29 81 | npcand |  |-  ( ( T. /\ n e. NN ) -> ( ( ( F ` n ) - ( J ` n ) ) + ( J ` n ) ) = ( F ` n ) ) | 
						
							| 83 | 82 | mpteq2dva |  |-  ( T. -> ( n e. NN |-> ( ( ( F ` n ) - ( J ` n ) ) + ( J ` n ) ) ) = ( n e. NN |-> ( F ` n ) ) ) | 
						
							| 84 |  | ovexd |  |-  ( ( T. /\ n e. NN ) -> ( ( F ` n ) - ( J ` n ) ) e. _V ) | 
						
							| 85 | 27 | feqmptd |  |-  ( T. -> F = ( n e. NN |-> ( F ` n ) ) ) | 
						
							| 86 | 79 | feqmptd |  |-  ( T. -> J = ( n e. NN |-> ( J ` n ) ) ) | 
						
							| 87 | 60 28 80 85 86 | offval2 |  |-  ( T. -> ( F oF - J ) = ( n e. NN |-> ( ( F ` n ) - ( J ` n ) ) ) ) | 
						
							| 88 | 60 84 80 87 86 | offval2 |  |-  ( T. -> ( ( F oF - J ) oF + J ) = ( n e. NN |-> ( ( ( F ` n ) - ( J ` n ) ) + ( J ` n ) ) ) ) | 
						
							| 89 | 83 88 85 | 3eqtr4d |  |-  ( T. -> ( ( F oF - J ) oF + J ) = F ) | 
						
							| 90 | 67 51 58 60 60 61 | off |  |-  ( T. -> ( ( NN X. { 1 } ) oF + G ) : NN --> RR ) | 
						
							| 91 |  | recn |  |-  ( x e. RR -> x e. CC ) | 
						
							| 92 |  | recn |  |-  ( y e. RR -> y e. CC ) | 
						
							| 93 |  | recn |  |-  ( z e. RR -> z e. CC ) | 
						
							| 94 |  | subdi |  |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) | 
						
							| 95 | 91 92 93 94 | syl3an |  |-  ( ( x e. RR /\ y e. RR /\ z e. RR ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) | 
						
							| 96 | 95 | adantl |  |-  ( ( T. /\ ( x e. RR /\ y e. RR /\ z e. RR ) ) -> ( x x. ( y - z ) ) = ( ( x x. y ) - ( x x. z ) ) ) | 
						
							| 97 | 60 65 90 76 96 | caofdi |  |-  ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) = ( ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) oF - ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) ) | 
						
							| 98 | 5 4 | oveq12i |  |-  ( K oF - J ) = ( ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) oF - ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) | 
						
							| 99 | 97 98 | eqtr4di |  |-  ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) = ( K oF - J ) ) | 
						
							| 100 | 39 | recni |  |-  ( ( _pi ^ 2 ) / 6 ) e. CC | 
						
							| 101 | 6 | eqimss2i |  |-  ( ZZ>= ` 1 ) C_ NN | 
						
							| 102 | 101 59 | climconst2 |  |-  ( ( ( ( _pi ^ 2 ) / 6 ) e. CC /\ 1 e. ZZ ) -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ~~> ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 103 | 100 7 102 | sylancr |  |-  ( T. -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ~~> ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 104 |  | ovexd |  |-  ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) e. _V ) | 
						
							| 105 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 106 |  | fss |  |-  ( ( ( NN X. { 1 } ) : NN --> RR /\ RR C_ CC ) -> ( NN X. { 1 } ) : NN --> CC ) | 
						
							| 107 | 51 105 106 | sylancl |  |-  ( T. -> ( NN X. { 1 } ) : NN --> CC ) | 
						
							| 108 |  | fss |  |-  ( ( G : NN --> RR /\ RR C_ CC ) -> G : NN --> CC ) | 
						
							| 109 | 58 105 108 | sylancl |  |-  ( T. -> G : NN --> CC ) | 
						
							| 110 |  | ofnegsub |  |-  ( ( NN e. _V /\ ( NN X. { 1 } ) : NN --> CC /\ G : NN --> CC ) -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 1 } ) oF x. G ) ) = ( ( NN X. { 1 } ) oF - G ) ) | 
						
							| 111 | 59 107 109 110 | mp3an2i |  |-  ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 1 } ) oF x. G ) ) = ( ( NN X. { 1 } ) oF - G ) ) | 
						
							| 112 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 113 | 1 112 | basellem7 |  |-  ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 1 } ) oF x. G ) ) ~~> 1 | 
						
							| 114 | 111 113 | eqbrtrrdi |  |-  ( T. -> ( ( NN X. { 1 } ) oF - G ) ~~> 1 ) | 
						
							| 115 | 43 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) e. RR ) | 
						
							| 116 | 115 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) e. CC ) | 
						
							| 117 | 62 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF - G ) ` k ) e. RR ) | 
						
							| 118 | 117 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF - G ) ` k ) e. CC ) | 
						
							| 119 | 43 | ffnd |  |-  ( T. -> ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) Fn NN ) | 
						
							| 120 |  | fnconstg |  |-  ( 1 e. ZZ -> ( NN X. { 1 } ) Fn NN ) | 
						
							| 121 | 7 120 | syl |  |-  ( T. -> ( NN X. { 1 } ) Fn NN ) | 
						
							| 122 | 58 | ffnd |  |-  ( T. -> G Fn NN ) | 
						
							| 123 | 121 122 60 60 61 | offn |  |-  ( T. -> ( ( NN X. { 1 } ) oF - G ) Fn NN ) | 
						
							| 124 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) = ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) ) | 
						
							| 125 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF - G ) ` k ) = ( ( ( NN X. { 1 } ) oF - G ) ` k ) ) | 
						
							| 126 | 119 123 60 60 61 124 125 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) ` k ) = ( ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) ` k ) x. ( ( ( NN X. { 1 } ) oF - G ) ` k ) ) ) | 
						
							| 127 | 6 7 103 104 114 116 118 126 | climmul |  |-  ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) ~~> ( ( ( _pi ^ 2 ) / 6 ) x. 1 ) ) | 
						
							| 128 | 100 | mulridi |  |-  ( ( ( _pi ^ 2 ) / 6 ) x. 1 ) = ( ( _pi ^ 2 ) / 6 ) | 
						
							| 129 | 127 128 | breqtrdi |  |-  ( T. -> ( ( NN X. { ( ( _pi ^ 2 ) / 6 ) } ) oF x. ( ( NN X. { 1 } ) oF - G ) ) ~~> ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 130 | 3 129 | eqbrtrid |  |-  ( T. -> H ~~> ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 131 |  | ovexd |  |-  ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) e. _V ) | 
						
							| 132 |  | 3cn |  |-  3 e. CC | 
						
							| 133 | 101 59 | climconst2 |  |-  ( ( 3 e. CC /\ 1 e. ZZ ) -> ( NN X. { 3 } ) ~~> 3 ) | 
						
							| 134 | 132 7 133 | sylancr |  |-  ( T. -> ( NN X. { 3 } ) ~~> 3 ) | 
						
							| 135 |  | ovexd |  |-  ( T. -> ( ( NN X. { 3 } ) oF x. G ) e. _V ) | 
						
							| 136 | 1 | basellem6 |  |-  G ~~> 0 | 
						
							| 137 | 136 | a1i |  |-  ( T. -> G ~~> 0 ) | 
						
							| 138 |  | 3ex |  |-  3 e. _V | 
						
							| 139 | 138 | fconst |  |-  ( NN X. { 3 } ) : NN --> { 3 } | 
						
							| 140 |  | 3re |  |-  3 e. RR | 
						
							| 141 | 140 | a1i |  |-  ( T. -> 3 e. RR ) | 
						
							| 142 | 141 | snssd |  |-  ( T. -> { 3 } C_ RR ) | 
						
							| 143 |  | fss |  |-  ( ( ( NN X. { 3 } ) : NN --> { 3 } /\ { 3 } C_ RR ) -> ( NN X. { 3 } ) : NN --> RR ) | 
						
							| 144 | 139 142 143 | sylancr |  |-  ( T. -> ( NN X. { 3 } ) : NN --> RR ) | 
						
							| 145 | 144 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { 3 } ) ` k ) e. RR ) | 
						
							| 146 | 145 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { 3 } ) ` k ) e. CC ) | 
						
							| 147 | 58 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) | 
						
							| 148 | 147 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) e. CC ) | 
						
							| 149 | 144 | ffnd |  |-  ( T. -> ( NN X. { 3 } ) Fn NN ) | 
						
							| 150 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( ( NN X. { 3 } ) ` k ) = ( ( NN X. { 3 } ) ` k ) ) | 
						
							| 151 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( G ` k ) = ( G ` k ) ) | 
						
							| 152 | 149 122 60 60 61 150 151 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 3 } ) oF x. G ) ` k ) = ( ( ( NN X. { 3 } ) ` k ) x. ( G ` k ) ) ) | 
						
							| 153 | 6 7 134 135 137 146 148 152 | climmul |  |-  ( T. -> ( ( NN X. { 3 } ) oF x. G ) ~~> ( 3 x. 0 ) ) | 
						
							| 154 | 132 | mul01i |  |-  ( 3 x. 0 ) = 0 | 
						
							| 155 | 153 154 | breqtrdi |  |-  ( T. -> ( ( NN X. { 3 } ) oF x. G ) ~~> 0 ) | 
						
							| 156 | 65 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( H ` k ) e. RR ) | 
						
							| 157 | 156 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( H ` k ) e. CC ) | 
						
							| 158 | 31 144 58 60 60 61 | off |  |-  ( T. -> ( ( NN X. { 3 } ) oF x. G ) : NN --> RR ) | 
						
							| 159 | 158 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 3 } ) oF x. G ) ` k ) e. RR ) | 
						
							| 160 | 159 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 3 } ) oF x. G ) ` k ) e. CC ) | 
						
							| 161 | 65 | ffnd |  |-  ( T. -> H Fn NN ) | 
						
							| 162 | 45 90 76 60 60 61 | off |  |-  ( T. -> ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) : NN --> RR ) | 
						
							| 163 | 162 | ffnd |  |-  ( T. -> ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) Fn NN ) | 
						
							| 164 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( H ` k ) = ( H ` k ) ) | 
						
							| 165 | 148 | mullidd |  |-  ( ( T. /\ k e. NN ) -> ( 1 x. ( G ` k ) ) = ( G ` k ) ) | 
						
							| 166 |  | 2cn |  |-  2 e. CC | 
						
							| 167 |  | mulneg1 |  |-  ( ( 2 e. CC /\ ( G ` k ) e. CC ) -> ( -u 2 x. ( G ` k ) ) = -u ( 2 x. ( G ` k ) ) ) | 
						
							| 168 | 166 148 167 | sylancr |  |-  ( ( T. /\ k e. NN ) -> ( -u 2 x. ( G ` k ) ) = -u ( 2 x. ( G ` k ) ) ) | 
						
							| 169 | 168 | negeqd |  |-  ( ( T. /\ k e. NN ) -> -u ( -u 2 x. ( G ` k ) ) = -u -u ( 2 x. ( G ` k ) ) ) | 
						
							| 170 |  | mulcl |  |-  ( ( 2 e. CC /\ ( G ` k ) e. CC ) -> ( 2 x. ( G ` k ) ) e. CC ) | 
						
							| 171 | 166 148 170 | sylancr |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. ( G ` k ) ) e. CC ) | 
						
							| 172 | 171 | negnegd |  |-  ( ( T. /\ k e. NN ) -> -u -u ( 2 x. ( G ` k ) ) = ( 2 x. ( G ` k ) ) ) | 
						
							| 173 | 169 172 | eqtr2d |  |-  ( ( T. /\ k e. NN ) -> ( 2 x. ( G ` k ) ) = -u ( -u 2 x. ( G ` k ) ) ) | 
						
							| 174 | 165 173 | oveq12d |  |-  ( ( T. /\ k e. NN ) -> ( ( 1 x. ( G ` k ) ) + ( 2 x. ( G ` k ) ) ) = ( ( G ` k ) + -u ( -u 2 x. ( G ` k ) ) ) ) | 
						
							| 175 |  | remulcl |  |-  ( ( -u 2 e. RR /\ ( G ` k ) e. RR ) -> ( -u 2 x. ( G ` k ) ) e. RR ) | 
						
							| 176 | 70 147 175 | sylancr |  |-  ( ( T. /\ k e. NN ) -> ( -u 2 x. ( G ` k ) ) e. RR ) | 
						
							| 177 | 176 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( -u 2 x. ( G ` k ) ) e. CC ) | 
						
							| 178 | 148 177 | negsubd |  |-  ( ( T. /\ k e. NN ) -> ( ( G ` k ) + -u ( -u 2 x. ( G ` k ) ) ) = ( ( G ` k ) - ( -u 2 x. ( G ` k ) ) ) ) | 
						
							| 179 | 174 178 | eqtrd |  |-  ( ( T. /\ k e. NN ) -> ( ( 1 x. ( G ` k ) ) + ( 2 x. ( G ` k ) ) ) = ( ( G ` k ) - ( -u 2 x. ( G ` k ) ) ) ) | 
						
							| 180 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 181 |  | ax-1cn |  |-  1 e. CC | 
						
							| 182 | 166 181 | addcomi |  |-  ( 2 + 1 ) = ( 1 + 2 ) | 
						
							| 183 | 180 182 | eqtri |  |-  3 = ( 1 + 2 ) | 
						
							| 184 | 183 | oveq1i |  |-  ( 3 x. ( G ` k ) ) = ( ( 1 + 2 ) x. ( G ` k ) ) | 
						
							| 185 |  | 1cnd |  |-  ( ( T. /\ k e. NN ) -> 1 e. CC ) | 
						
							| 186 | 166 | a1i |  |-  ( ( T. /\ k e. NN ) -> 2 e. CC ) | 
						
							| 187 | 185 186 148 | adddird |  |-  ( ( T. /\ k e. NN ) -> ( ( 1 + 2 ) x. ( G ` k ) ) = ( ( 1 x. ( G ` k ) ) + ( 2 x. ( G ` k ) ) ) ) | 
						
							| 188 | 184 187 | eqtrid |  |-  ( ( T. /\ k e. NN ) -> ( 3 x. ( G ` k ) ) = ( ( 1 x. ( G ` k ) ) + ( 2 x. ( G ` k ) ) ) ) | 
						
							| 189 | 185 148 177 | pnpcand |  |-  ( ( T. /\ k e. NN ) -> ( ( 1 + ( G ` k ) ) - ( 1 + ( -u 2 x. ( G ` k ) ) ) ) = ( ( G ` k ) - ( -u 2 x. ( G ` k ) ) ) ) | 
						
							| 190 | 179 188 189 | 3eqtr4rd |  |-  ( ( T. /\ k e. NN ) -> ( ( 1 + ( G ` k ) ) - ( 1 + ( -u 2 x. ( G ` k ) ) ) ) = ( 3 x. ( G ` k ) ) ) | 
						
							| 191 | 121 122 60 60 61 | offn |  |-  ( T. -> ( ( NN X. { 1 } ) oF + G ) Fn NN ) | 
						
							| 192 | 17 | a1i |  |-  ( T. -> -u 2 e. ZZ ) | 
						
							| 193 |  | fnconstg |  |-  ( -u 2 e. ZZ -> ( NN X. { -u 2 } ) Fn NN ) | 
						
							| 194 | 192 193 | syl |  |-  ( T. -> ( NN X. { -u 2 } ) Fn NN ) | 
						
							| 195 | 194 122 60 60 61 | offn |  |-  ( T. -> ( ( NN X. { -u 2 } ) oF x. G ) Fn NN ) | 
						
							| 196 | 121 195 60 60 61 | offn |  |-  ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) Fn NN ) | 
						
							| 197 | 60 48 122 151 | ofc1 |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + G ) ` k ) = ( 1 + ( G ` k ) ) ) | 
						
							| 198 | 60 71 122 151 | ofc1 |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { -u 2 } ) oF x. G ) ` k ) = ( -u 2 x. ( G ` k ) ) ) | 
						
							| 199 | 60 48 195 198 | ofc1 |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) = ( 1 + ( -u 2 x. ( G ` k ) ) ) ) | 
						
							| 200 | 191 196 60 60 61 197 199 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ` k ) = ( ( 1 + ( G ` k ) ) - ( 1 + ( -u 2 x. ( G ` k ) ) ) ) ) | 
						
							| 201 | 60 141 122 151 | ofc1 |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 3 } ) oF x. G ) ` k ) = ( 3 x. ( G ` k ) ) ) | 
						
							| 202 | 190 200 201 | 3eqtr4d |  |-  ( ( T. /\ k e. NN ) -> ( ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ` k ) = ( ( ( NN X. { 3 } ) oF x. G ) ` k ) ) | 
						
							| 203 | 161 163 60 60 61 164 202 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) ` k ) = ( ( H ` k ) x. ( ( ( NN X. { 3 } ) oF x. G ) ` k ) ) ) | 
						
							| 204 | 6 7 130 131 155 157 160 203 | climmul |  |-  ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) ~~> ( ( ( _pi ^ 2 ) / 6 ) x. 0 ) ) | 
						
							| 205 | 100 | mul01i |  |-  ( ( ( _pi ^ 2 ) / 6 ) x. 0 ) = 0 | 
						
							| 206 | 204 205 | breqtrdi |  |-  ( T. -> ( H oF x. ( ( ( NN X. { 1 } ) oF + G ) oF - ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ) ~~> 0 ) | 
						
							| 207 | 99 206 | eqbrtrrd |  |-  ( T. -> ( K oF - J ) ~~> 0 ) | 
						
							| 208 |  | ovexd |  |-  ( T. -> ( F oF - J ) e. _V ) | 
						
							| 209 | 31 65 90 60 60 61 | off |  |-  ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) : NN --> RR ) | 
						
							| 210 | 5 | feq1i |  |-  ( K : NN --> RR <-> ( H oF x. ( ( NN X. { 1 } ) oF + G ) ) : NN --> RR ) | 
						
							| 211 | 209 210 | sylibr |  |-  ( T. -> K : NN --> RR ) | 
						
							| 212 | 45 211 79 60 60 61 | off |  |-  ( T. -> ( K oF - J ) : NN --> RR ) | 
						
							| 213 | 212 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( K oF - J ) ` k ) e. RR ) | 
						
							| 214 | 45 27 79 60 60 61 | off |  |-  ( T. -> ( F oF - J ) : NN --> RR ) | 
						
							| 215 | 214 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) e. RR ) | 
						
							| 216 | 27 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) | 
						
							| 217 | 211 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( K ` k ) e. RR ) | 
						
							| 218 | 79 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( J ` k ) e. RR ) | 
						
							| 219 |  | eqid |  |-  ( ( 2 x. k ) + 1 ) = ( ( 2 x. k ) + 1 ) | 
						
							| 220 | 1 2 3 4 5 219 | basellem8 |  |-  ( k e. NN -> ( ( J ` k ) <_ ( F ` k ) /\ ( F ` k ) <_ ( K ` k ) ) ) | 
						
							| 221 | 220 | adantl |  |-  ( ( T. /\ k e. NN ) -> ( ( J ` k ) <_ ( F ` k ) /\ ( F ` k ) <_ ( K ` k ) ) ) | 
						
							| 222 | 221 | simprd |  |-  ( ( T. /\ k e. NN ) -> ( F ` k ) <_ ( K ` k ) ) | 
						
							| 223 | 216 217 218 222 | lesub1dd |  |-  ( ( T. /\ k e. NN ) -> ( ( F ` k ) - ( J ` k ) ) <_ ( ( K ` k ) - ( J ` k ) ) ) | 
						
							| 224 | 27 | ffnd |  |-  ( T. -> F Fn NN ) | 
						
							| 225 | 79 | ffnd |  |-  ( T. -> J Fn NN ) | 
						
							| 226 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) | 
						
							| 227 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( J ` k ) = ( J ` k ) ) | 
						
							| 228 | 224 225 60 60 61 226 227 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) = ( ( F ` k ) - ( J ` k ) ) ) | 
						
							| 229 | 211 | ffnd |  |-  ( T. -> K Fn NN ) | 
						
							| 230 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( K ` k ) = ( K ` k ) ) | 
						
							| 231 | 229 225 60 60 61 230 227 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( K oF - J ) ` k ) = ( ( K ` k ) - ( J ` k ) ) ) | 
						
							| 232 | 223 228 231 | 3brtr4d |  |-  ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) <_ ( ( K oF - J ) ` k ) ) | 
						
							| 233 | 221 | simpld |  |-  ( ( T. /\ k e. NN ) -> ( J ` k ) <_ ( F ` k ) ) | 
						
							| 234 | 216 218 | subge0d |  |-  ( ( T. /\ k e. NN ) -> ( 0 <_ ( ( F ` k ) - ( J ` k ) ) <-> ( J ` k ) <_ ( F ` k ) ) ) | 
						
							| 235 | 233 234 | mpbird |  |-  ( ( T. /\ k e. NN ) -> 0 <_ ( ( F ` k ) - ( J ` k ) ) ) | 
						
							| 236 | 235 228 | breqtrrd |  |-  ( ( T. /\ k e. NN ) -> 0 <_ ( ( F oF - J ) ` k ) ) | 
						
							| 237 | 6 7 207 208 213 215 232 236 | climsqz2 |  |-  ( T. -> ( F oF - J ) ~~> 0 ) | 
						
							| 238 |  | ovexd |  |-  ( T. -> ( ( F oF - J ) oF + J ) e. _V ) | 
						
							| 239 |  | ovexd |  |-  ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) e. _V ) | 
						
							| 240 | 70 | recni |  |-  -u 2 e. CC | 
						
							| 241 | 1 240 | basellem7 |  |-  ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ~~> 1 | 
						
							| 242 | 241 | a1i |  |-  ( T. -> ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ~~> 1 ) | 
						
							| 243 | 76 | ffvelcdmda |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) e. RR ) | 
						
							| 244 | 243 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) e. CC ) | 
						
							| 245 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) = ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) ) | 
						
							| 246 | 161 196 60 60 61 164 245 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ` k ) = ( ( H ` k ) x. ( ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ` k ) ) ) | 
						
							| 247 | 6 7 130 239 242 157 244 246 | climmul |  |-  ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ~~> ( ( ( _pi ^ 2 ) / 6 ) x. 1 ) ) | 
						
							| 248 | 247 128 | breqtrdi |  |-  ( T. -> ( H oF x. ( ( NN X. { 1 } ) oF + ( ( NN X. { -u 2 } ) oF x. G ) ) ) ~~> ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 249 | 4 248 | eqbrtrid |  |-  ( T. -> J ~~> ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 250 | 215 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) e. CC ) | 
						
							| 251 | 218 | recnd |  |-  ( ( T. /\ k e. NN ) -> ( J ` k ) e. CC ) | 
						
							| 252 | 214 | ffnd |  |-  ( T. -> ( F oF - J ) Fn NN ) | 
						
							| 253 |  | eqidd |  |-  ( ( T. /\ k e. NN ) -> ( ( F oF - J ) ` k ) = ( ( F oF - J ) ` k ) ) | 
						
							| 254 | 252 225 60 60 61 253 227 | ofval |  |-  ( ( T. /\ k e. NN ) -> ( ( ( F oF - J ) oF + J ) ` k ) = ( ( ( F oF - J ) ` k ) + ( J ` k ) ) ) | 
						
							| 255 | 6 7 237 238 249 250 251 254 | climadd |  |-  ( T. -> ( ( F oF - J ) oF + J ) ~~> ( 0 + ( ( _pi ^ 2 ) / 6 ) ) ) | 
						
							| 256 | 89 255 | eqbrtrrd |  |-  ( T. -> F ~~> ( 0 + ( ( _pi ^ 2 ) / 6 ) ) ) | 
						
							| 257 | 100 | addlidi |  |-  ( 0 + ( ( _pi ^ 2 ) / 6 ) ) = ( ( _pi ^ 2 ) / 6 ) | 
						
							| 258 | 256 2 257 | 3brtr3g |  |-  ( T. -> seq 1 ( + , ( n e. NN |-> ( n ^ -u 2 ) ) ) ~~> ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 259 | 6 7 12 24 258 | isumclim |  |-  ( T. -> sum_ k e. NN ( k ^ -u 2 ) = ( ( _pi ^ 2 ) / 6 ) ) | 
						
							| 260 | 259 | mptru |  |-  sum_ k e. NN ( k ^ -u 2 ) = ( ( _pi ^ 2 ) / 6 ) |