| Step | Hyp | Ref | Expression | 
						
							| 1 |  | basel.n |  |-  N = ( ( 2 x. M ) + 1 ) | 
						
							| 2 |  | basel.p |  |-  P = ( t e. CC |-> sum_ j e. ( 0 ... M ) ( ( ( N _C ( 2 x. j ) ) x. ( -u 1 ^ ( M - j ) ) ) x. ( t ^ j ) ) ) | 
						
							| 3 |  | basel.t |  |-  T = ( n e. ( 1 ... M ) |-> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) ) | 
						
							| 4 |  | eqid |  |-  ( coeff ` P ) = ( coeff ` P ) | 
						
							| 5 |  | eqid |  |-  ( deg ` P ) = ( deg ` P ) | 
						
							| 6 |  | eqid |  |-  ( `' P " { 0 } ) = ( `' P " { 0 } ) | 
						
							| 7 | 1 2 | basellem2 |  |-  ( M e. NN -> ( P e. ( Poly ` CC ) /\ ( deg ` P ) = M /\ ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) ) | 
						
							| 8 | 7 | simp1d |  |-  ( M e. NN -> P e. ( Poly ` CC ) ) | 
						
							| 9 | 7 | simp2d |  |-  ( M e. NN -> ( deg ` P ) = M ) | 
						
							| 10 |  | nnnn0 |  |-  ( M e. NN -> M e. NN0 ) | 
						
							| 11 |  | hashfz1 |  |-  ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) | 
						
							| 12 | 10 11 | syl |  |-  ( M e. NN -> ( # ` ( 1 ... M ) ) = M ) | 
						
							| 13 |  | fzfid |  |-  ( M e. NN -> ( 1 ... M ) e. Fin ) | 
						
							| 14 | 1 2 3 | basellem4 |  |-  ( M e. NN -> T : ( 1 ... M ) -1-1-onto-> ( `' P " { 0 } ) ) | 
						
							| 15 | 13 14 | hasheqf1od |  |-  ( M e. NN -> ( # ` ( 1 ... M ) ) = ( # ` ( `' P " { 0 } ) ) ) | 
						
							| 16 | 9 12 15 | 3eqtr2rd |  |-  ( M e. NN -> ( # ` ( `' P " { 0 } ) ) = ( deg ` P ) ) | 
						
							| 17 |  | id |  |-  ( M e. NN -> M e. NN ) | 
						
							| 18 | 9 17 | eqeltrd |  |-  ( M e. NN -> ( deg ` P ) e. NN ) | 
						
							| 19 | 4 5 6 8 16 18 | vieta1 |  |-  ( M e. NN -> sum_ x e. ( `' P " { 0 } ) x = -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) ) | 
						
							| 20 |  | id |  |-  ( x = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) -> x = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) | 
						
							| 21 |  | oveq1 |  |-  ( n = k -> ( n x. _pi ) = ( k x. _pi ) ) | 
						
							| 22 | 21 | fvoveq1d |  |-  ( n = k -> ( tan ` ( ( n x. _pi ) / N ) ) = ( tan ` ( ( k x. _pi ) / N ) ) ) | 
						
							| 23 | 22 | oveq1d |  |-  ( n = k -> ( ( tan ` ( ( n x. _pi ) / N ) ) ^ -u 2 ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) | 
						
							| 24 |  | ovex |  |-  ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) e. _V | 
						
							| 25 | 23 3 24 | fvmpt |  |-  ( k e. ( 1 ... M ) -> ( T ` k ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( M e. NN /\ k e. ( 1 ... M ) ) -> ( T ` k ) = ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) | 
						
							| 27 |  | cnvimass |  |-  ( `' P " { 0 } ) C_ dom P | 
						
							| 28 |  | plyf |  |-  ( P e. ( Poly ` CC ) -> P : CC --> CC ) | 
						
							| 29 |  | fdm |  |-  ( P : CC --> CC -> dom P = CC ) | 
						
							| 30 | 8 28 29 | 3syl |  |-  ( M e. NN -> dom P = CC ) | 
						
							| 31 | 27 30 | sseqtrid |  |-  ( M e. NN -> ( `' P " { 0 } ) C_ CC ) | 
						
							| 32 | 31 | sselda |  |-  ( ( M e. NN /\ x e. ( `' P " { 0 } ) ) -> x e. CC ) | 
						
							| 33 | 20 13 14 26 32 | fsumf1o |  |-  ( M e. NN -> sum_ x e. ( `' P " { 0 } ) x = sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) ) | 
						
							| 34 | 7 | simp3d |  |-  ( M e. NN -> ( coeff ` P ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ) | 
						
							| 35 | 9 | oveq1d |  |-  ( M e. NN -> ( ( deg ` P ) - 1 ) = ( M - 1 ) ) | 
						
							| 36 | 34 35 | fveq12d |  |-  ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) ) | 
						
							| 37 |  | nnm1nn0 |  |-  ( M e. NN -> ( M - 1 ) e. NN0 ) | 
						
							| 38 |  | oveq2 |  |-  ( n = ( M - 1 ) -> ( 2 x. n ) = ( 2 x. ( M - 1 ) ) ) | 
						
							| 39 | 38 | oveq2d |  |-  ( n = ( M - 1 ) -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) | 
						
							| 40 |  | oveq2 |  |-  ( n = ( M - 1 ) -> ( M - n ) = ( M - ( M - 1 ) ) ) | 
						
							| 41 | 40 | oveq2d |  |-  ( n = ( M - 1 ) -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - ( M - 1 ) ) ) ) | 
						
							| 42 | 39 41 | oveq12d |  |-  ( n = ( M - 1 ) -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) | 
						
							| 43 |  | eqid |  |-  ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) = ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) | 
						
							| 44 |  | ovex |  |-  ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) e. _V | 
						
							| 45 | 42 43 44 | fvmpt |  |-  ( ( M - 1 ) e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) | 
						
							| 46 | 37 45 | syl |  |-  ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` ( M - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) ) | 
						
							| 47 |  | nncn |  |-  ( M e. NN -> M e. CC ) | 
						
							| 48 |  | ax-1cn |  |-  1 e. CC | 
						
							| 49 |  | nncan |  |-  ( ( M e. CC /\ 1 e. CC ) -> ( M - ( M - 1 ) ) = 1 ) | 
						
							| 50 | 47 48 49 | sylancl |  |-  ( M e. NN -> ( M - ( M - 1 ) ) = 1 ) | 
						
							| 51 | 50 | oveq2d |  |-  ( M e. NN -> ( -u 1 ^ ( M - ( M - 1 ) ) ) = ( -u 1 ^ 1 ) ) | 
						
							| 52 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 53 |  | exp1 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 1 ) = -u 1 ) | 
						
							| 54 | 52 53 | ax-mp |  |-  ( -u 1 ^ 1 ) = -u 1 | 
						
							| 55 | 51 54 | eqtrdi |  |-  ( M e. NN -> ( -u 1 ^ ( M - ( M - 1 ) ) ) = -u 1 ) | 
						
							| 56 | 55 | oveq2d |  |-  ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) ) | 
						
							| 57 |  | 2nn |  |-  2 e. NN | 
						
							| 58 |  | nnmulcl |  |-  ( ( 2 e. NN /\ M e. NN ) -> ( 2 x. M ) e. NN ) | 
						
							| 59 | 57 58 | mpan |  |-  ( M e. NN -> ( 2 x. M ) e. NN ) | 
						
							| 60 | 59 | peano2nnd |  |-  ( M e. NN -> ( ( 2 x. M ) + 1 ) e. NN ) | 
						
							| 61 | 1 60 | eqeltrid |  |-  ( M e. NN -> N e. NN ) | 
						
							| 62 | 61 | nnnn0d |  |-  ( M e. NN -> N e. NN0 ) | 
						
							| 63 |  | 2z |  |-  2 e. ZZ | 
						
							| 64 |  | nnz |  |-  ( M e. NN -> M e. ZZ ) | 
						
							| 65 |  | peano2zm |  |-  ( M e. ZZ -> ( M - 1 ) e. ZZ ) | 
						
							| 66 | 64 65 | syl |  |-  ( M e. NN -> ( M - 1 ) e. ZZ ) | 
						
							| 67 |  | zmulcl |  |-  ( ( 2 e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( 2 x. ( M - 1 ) ) e. ZZ ) | 
						
							| 68 | 63 66 67 | sylancr |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ZZ ) | 
						
							| 69 |  | bccl |  |-  ( ( N e. NN0 /\ ( 2 x. ( M - 1 ) ) e. ZZ ) -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN0 ) | 
						
							| 70 | 62 68 69 | syl2anc |  |-  ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN0 ) | 
						
							| 71 | 70 | nn0cnd |  |-  ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. CC ) | 
						
							| 72 |  | mulcom |  |-  ( ( ( N _C ( 2 x. ( M - 1 ) ) ) e. CC /\ -u 1 e. CC ) -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) = ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) ) | 
						
							| 73 | 71 52 72 | sylancl |  |-  ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. -u 1 ) = ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) ) | 
						
							| 74 | 71 | mulm1d |  |-  ( M e. NN -> ( -u 1 x. ( N _C ( 2 x. ( M - 1 ) ) ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) | 
						
							| 75 | 56 73 74 | 3eqtrd |  |-  ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( -u 1 ^ ( M - ( M - 1 ) ) ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) | 
						
							| 76 | 36 46 75 | 3eqtrd |  |-  ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = -u ( N _C ( 2 x. ( M - 1 ) ) ) ) | 
						
							| 77 | 71 | negcld |  |-  ( M e. NN -> -u ( N _C ( 2 x. ( M - 1 ) ) ) e. CC ) | 
						
							| 78 | 76 77 | eqeltrd |  |-  ( M e. NN -> ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) e. CC ) | 
						
							| 79 | 34 9 | fveq12d |  |-  ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) ) | 
						
							| 80 |  | oveq2 |  |-  ( n = M -> ( 2 x. n ) = ( 2 x. M ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( n = M -> ( N _C ( 2 x. n ) ) = ( N _C ( 2 x. M ) ) ) | 
						
							| 82 |  | oveq2 |  |-  ( n = M -> ( M - n ) = ( M - M ) ) | 
						
							| 83 | 82 | oveq2d |  |-  ( n = M -> ( -u 1 ^ ( M - n ) ) = ( -u 1 ^ ( M - M ) ) ) | 
						
							| 84 | 81 83 | oveq12d |  |-  ( n = M -> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) | 
						
							| 85 |  | ovex |  |-  ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) e. _V | 
						
							| 86 | 84 43 85 | fvmpt |  |-  ( M e. NN0 -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) | 
						
							| 87 | 10 86 | syl |  |-  ( M e. NN -> ( ( n e. NN0 |-> ( ( N _C ( 2 x. n ) ) x. ( -u 1 ^ ( M - n ) ) ) ) ` M ) = ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) ) | 
						
							| 88 | 47 | subidd |  |-  ( M e. NN -> ( M - M ) = 0 ) | 
						
							| 89 | 88 | oveq2d |  |-  ( M e. NN -> ( -u 1 ^ ( M - M ) ) = ( -u 1 ^ 0 ) ) | 
						
							| 90 |  | exp0 |  |-  ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) | 
						
							| 91 | 52 90 | ax-mp |  |-  ( -u 1 ^ 0 ) = 1 | 
						
							| 92 | 89 91 | eqtrdi |  |-  ( M e. NN -> ( -u 1 ^ ( M - M ) ) = 1 ) | 
						
							| 93 | 92 | oveq2d |  |-  ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) = ( ( N _C ( 2 x. M ) ) x. 1 ) ) | 
						
							| 94 |  | fz1ssfz0 |  |-  ( 1 ... N ) C_ ( 0 ... N ) | 
						
							| 95 | 59 | nnred |  |-  ( M e. NN -> ( 2 x. M ) e. RR ) | 
						
							| 96 | 95 | lep1d |  |-  ( M e. NN -> ( 2 x. M ) <_ ( ( 2 x. M ) + 1 ) ) | 
						
							| 97 | 96 1 | breqtrrdi |  |-  ( M e. NN -> ( 2 x. M ) <_ N ) | 
						
							| 98 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 99 | 59 98 | eleqtrdi |  |-  ( M e. NN -> ( 2 x. M ) e. ( ZZ>= ` 1 ) ) | 
						
							| 100 | 61 | nnzd |  |-  ( M e. NN -> N e. ZZ ) | 
						
							| 101 |  | elfz5 |  |-  ( ( ( 2 x. M ) e. ( ZZ>= ` 1 ) /\ N e. ZZ ) -> ( ( 2 x. M ) e. ( 1 ... N ) <-> ( 2 x. M ) <_ N ) ) | 
						
							| 102 | 99 100 101 | syl2anc |  |-  ( M e. NN -> ( ( 2 x. M ) e. ( 1 ... N ) <-> ( 2 x. M ) <_ N ) ) | 
						
							| 103 | 97 102 | mpbird |  |-  ( M e. NN -> ( 2 x. M ) e. ( 1 ... N ) ) | 
						
							| 104 | 94 103 | sselid |  |-  ( M e. NN -> ( 2 x. M ) e. ( 0 ... N ) ) | 
						
							| 105 |  | bccl2 |  |-  ( ( 2 x. M ) e. ( 0 ... N ) -> ( N _C ( 2 x. M ) ) e. NN ) | 
						
							| 106 | 104 105 | syl |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) e. NN ) | 
						
							| 107 | 106 | nncnd |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) e. CC ) | 
						
							| 108 | 107 | mulridd |  |-  ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. 1 ) = ( N _C ( 2 x. M ) ) ) | 
						
							| 109 | 93 108 | eqtrd |  |-  ( M e. NN -> ( ( N _C ( 2 x. M ) ) x. ( -u 1 ^ ( M - M ) ) ) = ( N _C ( 2 x. M ) ) ) | 
						
							| 110 | 79 87 109 | 3eqtrd |  |-  ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) = ( N _C ( 2 x. M ) ) ) | 
						
							| 111 | 110 107 | eqeltrd |  |-  ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) e. CC ) | 
						
							| 112 | 106 | nnne0d |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) =/= 0 ) | 
						
							| 113 | 110 112 | eqnetrd |  |-  ( M e. NN -> ( ( coeff ` P ) ` ( deg ` P ) ) =/= 0 ) | 
						
							| 114 | 78 111 113 | divnegd |  |-  ( M e. NN -> -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) ) | 
						
							| 115 | 76 | negeqd |  |-  ( M e. NN -> -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = -u -u ( N _C ( 2 x. ( M - 1 ) ) ) ) | 
						
							| 116 | 71 | negnegd |  |-  ( M e. NN -> -u -u ( N _C ( 2 x. ( M - 1 ) ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) | 
						
							| 117 | 115 116 | eqtrd |  |-  ( M e. NN -> -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) | 
						
							| 118 | 117 110 | oveq12d |  |-  ( M e. NN -> ( -u ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) ) | 
						
							| 119 |  | bcm1k |  |-  ( ( 2 x. M ) e. ( 1 ... N ) -> ( N _C ( 2 x. M ) ) = ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) ) | 
						
							| 120 | 103 119 | syl |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) ) | 
						
							| 121 | 59 | nncnd |  |-  ( M e. NN -> ( 2 x. M ) e. CC ) | 
						
							| 122 |  | 1cnd |  |-  ( M e. NN -> 1 e. CC ) | 
						
							| 123 | 121 122 122 | pnncand |  |-  ( M e. NN -> ( ( ( 2 x. M ) + 1 ) - ( ( 2 x. M ) - 1 ) ) = ( 1 + 1 ) ) | 
						
							| 124 | 1 | oveq1i |  |-  ( N - ( ( 2 x. M ) - 1 ) ) = ( ( ( 2 x. M ) + 1 ) - ( ( 2 x. M ) - 1 ) ) | 
						
							| 125 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 126 | 123 124 125 | 3eqtr4g |  |-  ( M e. NN -> ( N - ( ( 2 x. M ) - 1 ) ) = 2 ) | 
						
							| 127 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 128 | 126 127 | eqeltrdi |  |-  ( M e. NN -> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) | 
						
							| 129 |  | nnm1nn0 |  |-  ( ( 2 x. M ) e. NN -> ( ( 2 x. M ) - 1 ) e. NN0 ) | 
						
							| 130 | 59 129 | syl |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) e. NN0 ) | 
						
							| 131 |  | nn0sub |  |-  ( ( ( ( 2 x. M ) - 1 ) e. NN0 /\ N e. NN0 ) -> ( ( ( 2 x. M ) - 1 ) <_ N <-> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) ) | 
						
							| 132 | 130 62 131 | syl2anc |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) <_ N <-> ( N - ( ( 2 x. M ) - 1 ) ) e. NN0 ) ) | 
						
							| 133 | 128 132 | mpbird |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) <_ N ) | 
						
							| 134 | 47 | 2timesd |  |-  ( M e. NN -> ( 2 x. M ) = ( M + M ) ) | 
						
							| 135 | 134 | oveq1d |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) = ( ( M + M ) - 1 ) ) | 
						
							| 136 | 47 47 122 | addsubd |  |-  ( M e. NN -> ( ( M + M ) - 1 ) = ( ( M - 1 ) + M ) ) | 
						
							| 137 | 135 136 | eqtrd |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) = ( ( M - 1 ) + M ) ) | 
						
							| 138 |  | nn0nnaddcl |  |-  ( ( ( M - 1 ) e. NN0 /\ M e. NN ) -> ( ( M - 1 ) + M ) e. NN ) | 
						
							| 139 | 37 138 | mpancom |  |-  ( M e. NN -> ( ( M - 1 ) + M ) e. NN ) | 
						
							| 140 | 137 139 | eqeltrd |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) e. NN ) | 
						
							| 141 | 140 98 | eleqtrdi |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 142 |  | elfz5 |  |-  ( ( ( ( 2 x. M ) - 1 ) e. ( ZZ>= ` 1 ) /\ N e. ZZ ) -> ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) <-> ( ( 2 x. M ) - 1 ) <_ N ) ) | 
						
							| 143 | 141 100 142 | syl2anc |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) <-> ( ( 2 x. M ) - 1 ) <_ N ) ) | 
						
							| 144 | 133 143 | mpbird |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) ) | 
						
							| 145 |  | bcm1k |  |-  ( ( ( 2 x. M ) - 1 ) e. ( 1 ... N ) -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) ) | 
						
							| 146 | 144 145 | syl |  |-  ( M e. NN -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) ) | 
						
							| 147 | 48 | 2timesi |  |-  ( 2 x. 1 ) = ( 1 + 1 ) | 
						
							| 148 | 147 | eqcomi |  |-  ( 1 + 1 ) = ( 2 x. 1 ) | 
						
							| 149 | 148 | oveq2i |  |-  ( ( 2 x. M ) - ( 1 + 1 ) ) = ( ( 2 x. M ) - ( 2 x. 1 ) ) | 
						
							| 150 | 121 122 122 | subsub4d |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) = ( ( 2 x. M ) - ( 1 + 1 ) ) ) | 
						
							| 151 |  | 2cnd |  |-  ( M e. NN -> 2 e. CC ) | 
						
							| 152 | 151 47 122 | subdid |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) = ( ( 2 x. M ) - ( 2 x. 1 ) ) ) | 
						
							| 153 | 149 150 152 | 3eqtr4a |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) = ( 2 x. ( M - 1 ) ) ) | 
						
							| 154 | 153 | oveq2d |  |-  ( M e. NN -> ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) = ( N _C ( 2 x. ( M - 1 ) ) ) ) | 
						
							| 155 | 61 | nncnd |  |-  ( M e. NN -> N e. CC ) | 
						
							| 156 | 140 | nncnd |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) e. CC ) | 
						
							| 157 | 155 156 122 | subsubd |  |-  ( M e. NN -> ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) = ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) ) | 
						
							| 158 | 126 | oveq1d |  |-  ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) = ( 2 + 1 ) ) | 
						
							| 159 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 160 | 158 159 | eqtr4di |  |-  ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) + 1 ) = 3 ) | 
						
							| 161 | 157 160 | eqtrd |  |-  ( M e. NN -> ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) = 3 ) | 
						
							| 162 | 161 | oveq1d |  |-  ( M e. NN -> ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) = ( 3 / ( ( 2 x. M ) - 1 ) ) ) | 
						
							| 163 | 154 162 | oveq12d |  |-  ( M e. NN -> ( ( N _C ( ( ( 2 x. M ) - 1 ) - 1 ) ) x. ( ( N - ( ( ( 2 x. M ) - 1 ) - 1 ) ) / ( ( 2 x. M ) - 1 ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) ) | 
						
							| 164 | 146 163 | eqtrd |  |-  ( M e. NN -> ( N _C ( ( 2 x. M ) - 1 ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) ) | 
						
							| 165 | 126 | oveq1d |  |-  ( M e. NN -> ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) = ( 2 / ( 2 x. M ) ) ) | 
						
							| 166 | 164 165 | oveq12d |  |-  ( M e. NN -> ( ( N _C ( ( 2 x. M ) - 1 ) ) x. ( ( N - ( ( 2 x. M ) - 1 ) ) / ( 2 x. M ) ) ) = ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) x. ( 2 / ( 2 x. M ) ) ) ) | 
						
							| 167 |  | 3re |  |-  3 e. RR | 
						
							| 168 |  | nndivre |  |-  ( ( 3 e. RR /\ ( ( 2 x. M ) - 1 ) e. NN ) -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. RR ) | 
						
							| 169 | 167 140 168 | sylancr |  |-  ( M e. NN -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. RR ) | 
						
							| 170 | 169 | recnd |  |-  ( M e. NN -> ( 3 / ( ( 2 x. M ) - 1 ) ) e. CC ) | 
						
							| 171 |  | 2re |  |-  2 e. RR | 
						
							| 172 |  | nndivre |  |-  ( ( 2 e. RR /\ ( 2 x. M ) e. NN ) -> ( 2 / ( 2 x. M ) ) e. RR ) | 
						
							| 173 | 171 59 172 | sylancr |  |-  ( M e. NN -> ( 2 / ( 2 x. M ) ) e. RR ) | 
						
							| 174 | 173 | recnd |  |-  ( M e. NN -> ( 2 / ( 2 x. M ) ) e. CC ) | 
						
							| 175 | 71 170 174 | mulassd |  |-  ( M e. NN -> ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 3 / ( ( 2 x. M ) - 1 ) ) ) x. ( 2 / ( 2 x. M ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) ) | 
						
							| 176 | 120 166 175 | 3eqtrd |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) ) | 
						
							| 177 |  | 3cn |  |-  3 e. CC | 
						
							| 178 | 177 | a1i |  |-  ( M e. NN -> 3 e. CC ) | 
						
							| 179 | 140 | nnne0d |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) =/= 0 ) | 
						
							| 180 | 59 | nnne0d |  |-  ( M e. NN -> ( 2 x. M ) =/= 0 ) | 
						
							| 181 | 178 156 151 121 179 180 | divmuldivd |  |-  ( M e. NN -> ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) = ( ( 3 x. 2 ) / ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) ) ) | 
						
							| 182 |  | 3t2e6 |  |-  ( 3 x. 2 ) = 6 | 
						
							| 183 | 182 | a1i |  |-  ( M e. NN -> ( 3 x. 2 ) = 6 ) | 
						
							| 184 | 156 121 | mulcomd |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) = ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) | 
						
							| 185 | 183 184 | oveq12d |  |-  ( M e. NN -> ( ( 3 x. 2 ) / ( ( ( 2 x. M ) - 1 ) x. ( 2 x. M ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) | 
						
							| 186 | 181 185 | eqtrd |  |-  ( M e. NN -> ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) | 
						
							| 187 | 186 | oveq2d |  |-  ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( ( 3 / ( ( 2 x. M ) - 1 ) ) x. ( 2 / ( 2 x. M ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) | 
						
							| 188 | 176 187 | eqtrd |  |-  ( M e. NN -> ( N _C ( 2 x. M ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) | 
						
							| 189 | 188 | oveq1d |  |-  ( M e. NN -> ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) | 
						
							| 190 |  | 6re |  |-  6 e. RR | 
						
							| 191 | 59 140 | nnmulcld |  |-  ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. NN ) | 
						
							| 192 |  | nndivre |  |-  ( ( 6 e. RR /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. NN ) -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. RR ) | 
						
							| 193 | 190 191 192 | sylancr |  |-  ( M e. NN -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. RR ) | 
						
							| 194 | 193 | recnd |  |-  ( M e. NN -> ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) e. CC ) | 
						
							| 195 |  | nnm1nn0 |  |-  ( ( ( 2 x. M ) - 1 ) e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) e. NN0 ) | 
						
							| 196 | 140 195 | syl |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) e. NN0 ) | 
						
							| 197 | 153 196 | eqeltrrd |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) e. NN0 ) | 
						
							| 198 | 197 | nn0red |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) e. RR ) | 
						
							| 199 | 140 | nnred |  |-  ( M e. NN -> ( ( 2 x. M ) - 1 ) e. RR ) | 
						
							| 200 | 61 | nnred |  |-  ( M e. NN -> N e. RR ) | 
						
							| 201 | 199 | ltm1d |  |-  ( M e. NN -> ( ( ( 2 x. M ) - 1 ) - 1 ) < ( ( 2 x. M ) - 1 ) ) | 
						
							| 202 | 153 201 | eqbrtrrd |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) < ( ( 2 x. M ) - 1 ) ) | 
						
							| 203 | 198 199 202 | ltled |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) <_ ( ( 2 x. M ) - 1 ) ) | 
						
							| 204 | 198 199 200 203 133 | letrd |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) <_ N ) | 
						
							| 205 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 206 | 197 205 | eleqtrdi |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ( ZZ>= ` 0 ) ) | 
						
							| 207 |  | elfz5 |  |-  ( ( ( 2 x. ( M - 1 ) ) e. ( ZZ>= ` 0 ) /\ N e. ZZ ) -> ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) <-> ( 2 x. ( M - 1 ) ) <_ N ) ) | 
						
							| 208 | 206 100 207 | syl2anc |  |-  ( M e. NN -> ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) <-> ( 2 x. ( M - 1 ) ) <_ N ) ) | 
						
							| 209 | 204 208 | mpbird |  |-  ( M e. NN -> ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) ) | 
						
							| 210 |  | bccl2 |  |-  ( ( 2 x. ( M - 1 ) ) e. ( 0 ... N ) -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN ) | 
						
							| 211 | 209 210 | syl |  |-  ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) e. NN ) | 
						
							| 212 | 211 | nnne0d |  |-  ( M e. NN -> ( N _C ( 2 x. ( M - 1 ) ) ) =/= 0 ) | 
						
							| 213 | 194 71 212 | divcan3d |  |-  ( M e. NN -> ( ( ( N _C ( 2 x. ( M - 1 ) ) ) x. ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) | 
						
							| 214 | 189 213 | eqtrd |  |-  ( M e. NN -> ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) = ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) | 
						
							| 215 | 214 | oveq2d |  |-  ( M e. NN -> ( 1 / ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) = ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) ) | 
						
							| 216 | 107 71 112 212 | recdivd |  |-  ( M e. NN -> ( 1 / ( ( N _C ( 2 x. M ) ) / ( N _C ( 2 x. ( M - 1 ) ) ) ) ) = ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) ) | 
						
							| 217 | 191 | nncnd |  |-  ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC ) | 
						
							| 218 | 191 | nnne0d |  |-  ( M e. NN -> ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) | 
						
							| 219 |  | 6cn |  |-  6 e. CC | 
						
							| 220 |  | 6nn |  |-  6 e. NN | 
						
							| 221 | 220 | nnne0i |  |-  6 =/= 0 | 
						
							| 222 |  | recdiv |  |-  ( ( ( 6 e. CC /\ 6 =/= 0 ) /\ ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) ) -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) | 
						
							| 223 | 219 221 222 | mpanl12 |  |-  ( ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) e. CC /\ ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) =/= 0 ) -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) | 
						
							| 224 | 217 218 223 | syl2anc |  |-  ( M e. NN -> ( 1 / ( 6 / ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) | 
						
							| 225 | 215 216 224 | 3eqtr3d |  |-  ( M e. NN -> ( ( N _C ( 2 x. ( M - 1 ) ) ) / ( N _C ( 2 x. M ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) | 
						
							| 226 | 114 118 225 | 3eqtrd |  |-  ( M e. NN -> -u ( ( ( coeff ` P ) ` ( ( deg ` P ) - 1 ) ) / ( ( coeff ` P ) ` ( deg ` P ) ) ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) | 
						
							| 227 | 19 33 226 | 3eqtr3d |  |-  ( M e. NN -> sum_ k e. ( 1 ... M ) ( ( tan ` ( ( k x. _pi ) / N ) ) ^ -u 2 ) = ( ( ( 2 x. M ) x. ( ( 2 x. M ) - 1 ) ) / 6 ) ) |