| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vieta1.1 |
|- A = ( coeff ` F ) |
| 2 |
|
vieta1.2 |
|- N = ( deg ` F ) |
| 3 |
|
vieta1.3 |
|- R = ( `' F " { 0 } ) |
| 4 |
|
vieta1.4 |
|- ( ph -> F e. ( Poly ` S ) ) |
| 5 |
|
vieta1.5 |
|- ( ph -> ( # ` R ) = N ) |
| 6 |
|
vieta1.6 |
|- ( ph -> N e. NN ) |
| 7 |
|
fveq2 |
|- ( f = F -> ( deg ` f ) = ( deg ` F ) ) |
| 8 |
7
|
eqeq2d |
|- ( f = F -> ( N = ( deg ` f ) <-> N = ( deg ` F ) ) ) |
| 9 |
|
cnveq |
|- ( f = F -> `' f = `' F ) |
| 10 |
9
|
imaeq1d |
|- ( f = F -> ( `' f " { 0 } ) = ( `' F " { 0 } ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( f = F -> ( `' f " { 0 } ) = R ) |
| 12 |
11
|
fveq2d |
|- ( f = F -> ( # ` ( `' f " { 0 } ) ) = ( # ` R ) ) |
| 13 |
7 2
|
eqtr4di |
|- ( f = F -> ( deg ` f ) = N ) |
| 14 |
12 13
|
eqeq12d |
|- ( f = F -> ( ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) <-> ( # ` R ) = N ) ) |
| 15 |
8 14
|
anbi12d |
|- ( f = F -> ( ( N = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) <-> ( N = ( deg ` F ) /\ ( # ` R ) = N ) ) ) |
| 16 |
2
|
biantrur |
|- ( ( # ` R ) = N <-> ( N = ( deg ` F ) /\ ( # ` R ) = N ) ) |
| 17 |
15 16
|
bitr4di |
|- ( f = F -> ( ( N = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) <-> ( # ` R ) = N ) ) |
| 18 |
11
|
sumeq1d |
|- ( f = F -> sum_ x e. ( `' f " { 0 } ) x = sum_ x e. R x ) |
| 19 |
|
fveq2 |
|- ( f = F -> ( coeff ` f ) = ( coeff ` F ) ) |
| 20 |
19 1
|
eqtr4di |
|- ( f = F -> ( coeff ` f ) = A ) |
| 21 |
13
|
oveq1d |
|- ( f = F -> ( ( deg ` f ) - 1 ) = ( N - 1 ) ) |
| 22 |
20 21
|
fveq12d |
|- ( f = F -> ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) = ( A ` ( N - 1 ) ) ) |
| 23 |
20 13
|
fveq12d |
|- ( f = F -> ( ( coeff ` f ) ` ( deg ` f ) ) = ( A ` N ) ) |
| 24 |
22 23
|
oveq12d |
|- ( f = F -> ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) = ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
| 25 |
24
|
negeqd |
|- ( f = F -> -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
| 26 |
18 25
|
eqeq12d |
|- ( f = F -> ( sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) <-> sum_ x e. R x = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) ) |
| 27 |
17 26
|
imbi12d |
|- ( f = F -> ( ( ( N = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> ( ( # ` R ) = N -> sum_ x e. R x = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) ) ) |
| 28 |
|
eqeq1 |
|- ( y = 1 -> ( y = ( deg ` f ) <-> 1 = ( deg ` f ) ) ) |
| 29 |
28
|
anbi1d |
|- ( y = 1 -> ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) <-> ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) ) |
| 30 |
29
|
imbi1d |
|- ( y = 1 -> ( ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> ( ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 31 |
30
|
ralbidv |
|- ( y = 1 -> ( A. f e. ( Poly ` CC ) ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> A. f e. ( Poly ` CC ) ( ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 32 |
|
eqeq1 |
|- ( y = d -> ( y = ( deg ` f ) <-> d = ( deg ` f ) ) ) |
| 33 |
32
|
anbi1d |
|- ( y = d -> ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) <-> ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) ) |
| 34 |
33
|
imbi1d |
|- ( y = d -> ( ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 35 |
34
|
ralbidv |
|- ( y = d -> ( A. f e. ( Poly ` CC ) ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 36 |
|
eqeq1 |
|- ( y = ( d + 1 ) -> ( y = ( deg ` f ) <-> ( d + 1 ) = ( deg ` f ) ) ) |
| 37 |
36
|
anbi1d |
|- ( y = ( d + 1 ) -> ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) <-> ( ( d + 1 ) = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) ) |
| 38 |
37
|
imbi1d |
|- ( y = ( d + 1 ) -> ( ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> ( ( ( d + 1 ) = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 39 |
38
|
ralbidv |
|- ( y = ( d + 1 ) -> ( A. f e. ( Poly ` CC ) ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> A. f e. ( Poly ` CC ) ( ( ( d + 1 ) = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 40 |
|
eqeq1 |
|- ( y = N -> ( y = ( deg ` f ) <-> N = ( deg ` f ) ) ) |
| 41 |
40
|
anbi1d |
|- ( y = N -> ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) <-> ( N = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) ) |
| 42 |
41
|
imbi1d |
|- ( y = N -> ( ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> ( ( N = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 43 |
42
|
ralbidv |
|- ( y = N -> ( A. f e. ( Poly ` CC ) ( ( y = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> A. f e. ( Poly ` CC ) ( ( N = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 44 |
|
eqid |
|- ( coeff ` f ) = ( coeff ` f ) |
| 45 |
44
|
coef3 |
|- ( f e. ( Poly ` CC ) -> ( coeff ` f ) : NN0 --> CC ) |
| 46 |
45
|
adantr |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( coeff ` f ) : NN0 --> CC ) |
| 47 |
|
0nn0 |
|- 0 e. NN0 |
| 48 |
|
ffvelcdm |
|- ( ( ( coeff ` f ) : NN0 --> CC /\ 0 e. NN0 ) -> ( ( coeff ` f ) ` 0 ) e. CC ) |
| 49 |
46 47 48
|
sylancl |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( coeff ` f ) ` 0 ) e. CC ) |
| 50 |
|
1nn0 |
|- 1 e. NN0 |
| 51 |
|
ffvelcdm |
|- ( ( ( coeff ` f ) : NN0 --> CC /\ 1 e. NN0 ) -> ( ( coeff ` f ) ` 1 ) e. CC ) |
| 52 |
46 50 51
|
sylancl |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( coeff ` f ) ` 1 ) e. CC ) |
| 53 |
|
simpr |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> 1 = ( deg ` f ) ) |
| 54 |
53
|
fveq2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( coeff ` f ) ` 1 ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) |
| 55 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 56 |
55
|
a1i |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> 1 =/= 0 ) |
| 57 |
53 56
|
eqnetrrd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( deg ` f ) =/= 0 ) |
| 58 |
|
fveq2 |
|- ( f = 0p -> ( deg ` f ) = ( deg ` 0p ) ) |
| 59 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 60 |
58 59
|
eqtrdi |
|- ( f = 0p -> ( deg ` f ) = 0 ) |
| 61 |
60
|
necon3i |
|- ( ( deg ` f ) =/= 0 -> f =/= 0p ) |
| 62 |
57 61
|
syl |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> f =/= 0p ) |
| 63 |
|
eqid |
|- ( deg ` f ) = ( deg ` f ) |
| 64 |
63 44
|
dgreq0 |
|- ( f e. ( Poly ` CC ) -> ( f = 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) = 0 ) ) |
| 65 |
64
|
necon3bid |
|- ( f e. ( Poly ` CC ) -> ( f =/= 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) =/= 0 ) ) |
| 66 |
65
|
adantr |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( f =/= 0p <-> ( ( coeff ` f ) ` ( deg ` f ) ) =/= 0 ) ) |
| 67 |
62 66
|
mpbid |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( coeff ` f ) ` ( deg ` f ) ) =/= 0 ) |
| 68 |
54 67
|
eqnetrd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( coeff ` f ) ` 1 ) =/= 0 ) |
| 69 |
49 52 68
|
divcld |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC ) |
| 70 |
69
|
negcld |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC ) |
| 71 |
|
id |
|- ( x = -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) -> x = -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) |
| 72 |
71
|
sumsn |
|- ( ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC /\ -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC ) -> sum_ x e. { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } x = -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) |
| 73 |
70 70 72
|
syl2anc |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> sum_ x e. { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } x = -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) |
| 74 |
73
|
adantrr |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> sum_ x e. { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } x = -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) |
| 75 |
|
eqid |
|- ( `' f " { 0 } ) = ( `' f " { 0 } ) |
| 76 |
75
|
fta1 |
|- ( ( f e. ( Poly ` CC ) /\ f =/= 0p ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) |
| 77 |
62 76
|
syldan |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) |
| 78 |
77
|
simpld |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( `' f " { 0 } ) e. Fin ) |
| 79 |
78
|
adantrr |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> ( `' f " { 0 } ) e. Fin ) |
| 80 |
44 63
|
coeid2 |
|- ( ( f e. ( Poly ` CC ) /\ -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC ) -> ( f ` -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) ) |
| 81 |
70 80
|
syldan |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( f ` -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) ) |
| 82 |
53
|
oveq2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( 0 ... 1 ) = ( 0 ... ( deg ` f ) ) ) |
| 83 |
82
|
sumeq1d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = sum_ k e. ( 0 ... ( deg ` f ) ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) ) |
| 84 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 85 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 86 |
|
fveq2 |
|- ( k = 1 -> ( ( coeff ` f ) ` k ) = ( ( coeff ` f ) ` 1 ) ) |
| 87 |
|
oveq2 |
|- ( k = 1 -> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) = ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 1 ) ) |
| 88 |
86 87
|
oveq12d |
|- ( k = 1 -> ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = ( ( ( coeff ` f ) ` 1 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 1 ) ) ) |
| 89 |
46
|
ffvelcdmda |
|- ( ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) /\ k e. NN0 ) -> ( ( coeff ` f ) ` k ) e. CC ) |
| 90 |
|
expcl |
|- ( ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC /\ k e. NN0 ) -> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) e. CC ) |
| 91 |
70 90
|
sylan |
|- ( ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) /\ k e. NN0 ) -> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) e. CC ) |
| 92 |
89 91
|
mulcld |
|- ( ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) /\ k e. NN0 ) -> ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) e. CC ) |
| 93 |
|
0z |
|- 0 e. ZZ |
| 94 |
70
|
exp0d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) = 1 ) |
| 95 |
94
|
oveq2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) ) = ( ( ( coeff ` f ) ` 0 ) x. 1 ) ) |
| 96 |
49
|
mulridd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) x. 1 ) = ( ( coeff ` f ) ` 0 ) ) |
| 97 |
95 96
|
eqtrd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) ) = ( ( coeff ` f ) ` 0 ) ) |
| 98 |
97 49
|
eqeltrd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) ) e. CC ) |
| 99 |
|
fveq2 |
|- ( k = 0 -> ( ( coeff ` f ) ` k ) = ( ( coeff ` f ) ` 0 ) ) |
| 100 |
|
oveq2 |
|- ( k = 0 -> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) = ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) ) |
| 101 |
99 100
|
oveq12d |
|- ( k = 0 -> ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = ( ( ( coeff ` f ) ` 0 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) ) ) |
| 102 |
101
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( ( ( coeff ` f ) ` 0 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = ( ( ( coeff ` f ) ` 0 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) ) ) |
| 103 |
93 98 102
|
sylancr |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = ( ( ( coeff ` f ) ` 0 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 0 ) ) ) |
| 104 |
103 97
|
eqtrd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = ( ( coeff ` f ) ` 0 ) ) |
| 105 |
104 47
|
jctil |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( 0 e. NN0 /\ sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = ( ( coeff ` f ) ` 0 ) ) ) |
| 106 |
70
|
exp1d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 1 ) = -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) |
| 107 |
106
|
oveq2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 1 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 1 ) ) = ( ( ( coeff ` f ) ` 1 ) x. -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) ) |
| 108 |
52 69
|
mulneg2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 1 ) x. -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) = -u ( ( ( coeff ` f ) ` 1 ) x. ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) ) |
| 109 |
49 52 68
|
divcan2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 1 ) x. ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) = ( ( coeff ` f ) ` 0 ) ) |
| 110 |
109
|
negeqd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> -u ( ( ( coeff ` f ) ` 1 ) x. ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) = -u ( ( coeff ` f ) ` 0 ) ) |
| 111 |
107 108 110
|
3eqtrd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 1 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 1 ) ) = -u ( ( coeff ` f ) ` 0 ) ) |
| 112 |
111
|
oveq2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) + ( ( ( coeff ` f ) ` 1 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 1 ) ) ) = ( ( ( coeff ` f ) ` 0 ) + -u ( ( coeff ` f ) ` 0 ) ) ) |
| 113 |
49
|
negidd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) + -u ( ( coeff ` f ) ` 0 ) ) = 0 ) |
| 114 |
112 113
|
eqtrd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) + ( ( ( coeff ` f ) ` 1 ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ 1 ) ) ) = 0 ) |
| 115 |
84 85 88 92 105 114
|
fsump1i |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( 1 e. NN0 /\ sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = 0 ) ) |
| 116 |
115
|
simprd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` f ) ` k ) x. ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ^ k ) ) = 0 ) |
| 117 |
81 83 116
|
3eqtr2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( f ` -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) = 0 ) |
| 118 |
|
plyf |
|- ( f e. ( Poly ` CC ) -> f : CC --> CC ) |
| 119 |
118
|
ffnd |
|- ( f e. ( Poly ` CC ) -> f Fn CC ) |
| 120 |
119
|
adantr |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> f Fn CC ) |
| 121 |
|
fniniseg |
|- ( f Fn CC -> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. ( `' f " { 0 } ) <-> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC /\ ( f ` -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) = 0 ) ) ) |
| 122 |
120 121
|
syl |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. ( `' f " { 0 } ) <-> ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC /\ ( f ` -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) ) = 0 ) ) ) |
| 123 |
70 117 122
|
mpbir2and |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. ( `' f " { 0 } ) ) |
| 124 |
123
|
snssd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } C_ ( `' f " { 0 } ) ) |
| 125 |
124
|
adantrr |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } C_ ( `' f " { 0 } ) ) |
| 126 |
|
hashsng |
|- ( -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) e. CC -> ( # ` { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ) = 1 ) |
| 127 |
70 126
|
syl |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( # ` { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ) = 1 ) |
| 128 |
127 53
|
eqtrd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( # ` { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ) = ( deg ` f ) ) |
| 129 |
128
|
adantrr |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> ( # ` { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ) = ( deg ` f ) ) |
| 130 |
|
simprr |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) |
| 131 |
129 130
|
eqtr4d |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> ( # ` { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ) = ( # ` ( `' f " { 0 } ) ) ) |
| 132 |
|
snfi |
|- { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } e. Fin |
| 133 |
|
hashen |
|- ( ( { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } e. Fin /\ ( `' f " { 0 } ) e. Fin ) -> ( ( # ` { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ) = ( # ` ( `' f " { 0 } ) ) <-> { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ~~ ( `' f " { 0 } ) ) ) |
| 134 |
132 78 133
|
sylancr |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( # ` { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ) = ( # ` ( `' f " { 0 } ) ) <-> { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ~~ ( `' f " { 0 } ) ) ) |
| 135 |
134
|
adantrr |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> ( ( # ` { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ) = ( # ` ( `' f " { 0 } ) ) <-> { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ~~ ( `' f " { 0 } ) ) ) |
| 136 |
131 135
|
mpbid |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ~~ ( `' f " { 0 } ) ) |
| 137 |
|
fisseneq |
|- ( ( ( `' f " { 0 } ) e. Fin /\ { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } C_ ( `' f " { 0 } ) /\ { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } ~~ ( `' f " { 0 } ) ) -> { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } = ( `' f " { 0 } ) ) |
| 138 |
79 125 136 137
|
syl3anc |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } = ( `' f " { 0 } ) ) |
| 139 |
138
|
sumeq1d |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> sum_ x e. { -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) } x = sum_ x e. ( `' f " { 0 } ) x ) |
| 140 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 141 |
53
|
oveq1d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( 1 - 1 ) = ( ( deg ` f ) - 1 ) ) |
| 142 |
140 141
|
eqtr3id |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> 0 = ( ( deg ` f ) - 1 ) ) |
| 143 |
142
|
fveq2d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( coeff ` f ) ` 0 ) = ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) ) |
| 144 |
143 54
|
oveq12d |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) |
| 145 |
144
|
negeqd |
|- ( ( f e. ( Poly ` CC ) /\ 1 = ( deg ` f ) ) -> -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) |
| 146 |
145
|
adantrr |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> -u ( ( ( coeff ` f ) ` 0 ) / ( ( coeff ` f ) ` 1 ) ) = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) |
| 147 |
74 139 146
|
3eqtr3d |
|- ( ( f e. ( Poly ` CC ) /\ ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) |
| 148 |
147
|
ex |
|- ( f e. ( Poly ` CC ) -> ( ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 149 |
148
|
rgen |
|- A. f e. ( Poly ` CC ) ( ( 1 = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) |
| 150 |
|
id |
|- ( y = x -> y = x ) |
| 151 |
150
|
cbvsumv |
|- sum_ y e. ( `' f " { 0 } ) y = sum_ x e. ( `' f " { 0 } ) x |
| 152 |
151
|
eqeq1i |
|- ( sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) <-> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) |
| 153 |
152
|
imbi2i |
|- ( ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 154 |
153
|
ralbii |
|- ( A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 155 |
|
eqid |
|- ( coeff ` g ) = ( coeff ` g ) |
| 156 |
|
eqid |
|- ( deg ` g ) = ( deg ` g ) |
| 157 |
|
eqid |
|- ( `' g " { 0 } ) = ( `' g " { 0 } ) |
| 158 |
|
simp1r |
|- ( ( ( d e. NN /\ g e. ( Poly ` CC ) ) /\ A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) /\ ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) ) -> g e. ( Poly ` CC ) ) |
| 159 |
|
simp3r |
|- ( ( ( d e. NN /\ g e. ( Poly ` CC ) ) /\ A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) /\ ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) ) -> ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) |
| 160 |
|
simp1l |
|- ( ( ( d e. NN /\ g e. ( Poly ` CC ) ) /\ A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) /\ ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) ) -> d e. NN ) |
| 161 |
|
simp3l |
|- ( ( ( d e. NN /\ g e. ( Poly ` CC ) ) /\ A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) /\ ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) ) -> ( d + 1 ) = ( deg ` g ) ) |
| 162 |
|
simp2 |
|- ( ( ( d e. NN /\ g e. ( Poly ` CC ) ) /\ A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) /\ ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) ) -> A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 163 |
162 154
|
sylib |
|- ( ( ( d e. NN /\ g e. ( Poly ` CC ) ) /\ A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) /\ ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) ) -> A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 164 |
|
eqid |
|- ( g quot ( Xp oF - ( CC X. { z } ) ) ) = ( g quot ( Xp oF - ( CC X. { z } ) ) ) |
| 165 |
155 156 157 158 159 160 161 163 164
|
vieta1lem2 |
|- ( ( ( d e. NN /\ g e. ( Poly ` CC ) ) /\ A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) /\ ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) ) -> sum_ x e. ( `' g " { 0 } ) x = -u ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) ) |
| 166 |
165
|
3exp |
|- ( ( d e. NN /\ g e. ( Poly ` CC ) ) -> ( A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ y e. ( `' f " { 0 } ) y = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) -> ( ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) -> sum_ x e. ( `' g " { 0 } ) x = -u ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) ) ) ) |
| 167 |
154 166
|
biimtrrid |
|- ( ( d e. NN /\ g e. ( Poly ` CC ) ) -> ( A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) -> ( ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) -> sum_ x e. ( `' g " { 0 } ) x = -u ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) ) ) ) |
| 168 |
167
|
ralrimdva |
|- ( d e. NN -> ( A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) -> A. g e. ( Poly ` CC ) ( ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) -> sum_ x e. ( `' g " { 0 } ) x = -u ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) ) ) ) |
| 169 |
|
fveq2 |
|- ( g = f -> ( deg ` g ) = ( deg ` f ) ) |
| 170 |
169
|
eqeq2d |
|- ( g = f -> ( ( d + 1 ) = ( deg ` g ) <-> ( d + 1 ) = ( deg ` f ) ) ) |
| 171 |
|
cnveq |
|- ( g = f -> `' g = `' f ) |
| 172 |
171
|
imaeq1d |
|- ( g = f -> ( `' g " { 0 } ) = ( `' f " { 0 } ) ) |
| 173 |
172
|
fveq2d |
|- ( g = f -> ( # ` ( `' g " { 0 } ) ) = ( # ` ( `' f " { 0 } ) ) ) |
| 174 |
173 169
|
eqeq12d |
|- ( g = f -> ( ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) <-> ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) |
| 175 |
170 174
|
anbi12d |
|- ( g = f -> ( ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) <-> ( ( d + 1 ) = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) ) ) |
| 176 |
172
|
sumeq1d |
|- ( g = f -> sum_ x e. ( `' g " { 0 } ) x = sum_ x e. ( `' f " { 0 } ) x ) |
| 177 |
|
fveq2 |
|- ( g = f -> ( coeff ` g ) = ( coeff ` f ) ) |
| 178 |
169
|
oveq1d |
|- ( g = f -> ( ( deg ` g ) - 1 ) = ( ( deg ` f ) - 1 ) ) |
| 179 |
177 178
|
fveq12d |
|- ( g = f -> ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) = ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) ) |
| 180 |
177 169
|
fveq12d |
|- ( g = f -> ( ( coeff ` g ) ` ( deg ` g ) ) = ( ( coeff ` f ) ` ( deg ` f ) ) ) |
| 181 |
179 180
|
oveq12d |
|- ( g = f -> ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) = ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) |
| 182 |
181
|
negeqd |
|- ( g = f -> -u ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) |
| 183 |
176 182
|
eqeq12d |
|- ( g = f -> ( sum_ x e. ( `' g " { 0 } ) x = -u ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) <-> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 184 |
175 183
|
imbi12d |
|- ( g = f -> ( ( ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) -> sum_ x e. ( `' g " { 0 } ) x = -u ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) ) <-> ( ( ( d + 1 ) = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 185 |
184
|
cbvralvw |
|- ( A. g e. ( Poly ` CC ) ( ( ( d + 1 ) = ( deg ` g ) /\ ( # ` ( `' g " { 0 } ) ) = ( deg ` g ) ) -> sum_ x e. ( `' g " { 0 } ) x = -u ( ( ( coeff ` g ) ` ( ( deg ` g ) - 1 ) ) / ( ( coeff ` g ) ` ( deg ` g ) ) ) ) <-> A. f e. ( Poly ` CC ) ( ( ( d + 1 ) = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 186 |
168 185
|
imbitrdi |
|- ( d e. NN -> ( A. f e. ( Poly ` CC ) ( ( d = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) -> A. f e. ( Poly ` CC ) ( ( ( d + 1 ) = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) ) |
| 187 |
31 35 39 43 149 186
|
nnind |
|- ( N e. NN -> A. f e. ( Poly ` CC ) ( ( N = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 188 |
6 187
|
syl |
|- ( ph -> A. f e. ( Poly ` CC ) ( ( N = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 189 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
| 190 |
189 4
|
sselid |
|- ( ph -> F e. ( Poly ` CC ) ) |
| 191 |
27 188 190
|
rspcdva |
|- ( ph -> ( ( # ` R ) = N -> sum_ x e. R x = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) ) |
| 192 |
5 191
|
mpd |
|- ( ph -> sum_ x e. R x = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |