| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fta1.1 |
|- R = ( `' F " { 0 } ) |
| 2 |
|
eqid |
|- ( deg ` F ) = ( deg ` F ) |
| 3 |
|
dgrcl |
|- ( F e. ( Poly ` S ) -> ( deg ` F ) e. NN0 ) |
| 4 |
3
|
adantr |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( deg ` F ) e. NN0 ) |
| 5 |
|
eqeq2 |
|- ( x = 0 -> ( ( deg ` f ) = x <-> ( deg ` f ) = 0 ) ) |
| 6 |
5
|
imbi1d |
|- ( x = 0 -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 7 |
6
|
ralbidv |
|- ( x = 0 -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 8 |
|
eqeq2 |
|- ( x = d -> ( ( deg ` f ) = x <-> ( deg ` f ) = d ) ) |
| 9 |
8
|
imbi1d |
|- ( x = d -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 10 |
9
|
ralbidv |
|- ( x = d -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 11 |
|
eqeq2 |
|- ( x = ( d + 1 ) -> ( ( deg ` f ) = x <-> ( deg ` f ) = ( d + 1 ) ) ) |
| 12 |
11
|
imbi1d |
|- ( x = ( d + 1 ) -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 13 |
12
|
ralbidv |
|- ( x = ( d + 1 ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 14 |
|
eqeq2 |
|- ( x = ( deg ` F ) -> ( ( deg ` f ) = x <-> ( deg ` f ) = ( deg ` F ) ) ) |
| 15 |
14
|
imbi1d |
|- ( x = ( deg ` F ) -> ( ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 16 |
15
|
ralbidv |
|- ( x = ( deg ` F ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = x -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 17 |
|
eldifsni |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> f =/= 0p ) |
| 18 |
17
|
adantr |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> f =/= 0p ) |
| 19 |
|
simplr |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( deg ` f ) = 0 ) |
| 20 |
|
eldifi |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> f e. ( Poly ` CC ) ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f e. ( Poly ` CC ) ) |
| 22 |
|
0dgrb |
|- ( f e. ( Poly ` CC ) -> ( ( deg ` f ) = 0 <-> f = ( CC X. { ( f ` 0 ) } ) ) ) |
| 23 |
21 22
|
syl |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( ( deg ` f ) = 0 <-> f = ( CC X. { ( f ` 0 ) } ) ) ) |
| 24 |
19 23
|
mpbid |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = ( CC X. { ( f ` 0 ) } ) ) |
| 25 |
24
|
fveq1d |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` x ) = ( ( CC X. { ( f ` 0 ) } ) ` x ) ) |
| 26 |
20
|
adantr |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> f e. ( Poly ` CC ) ) |
| 27 |
|
plyf |
|- ( f e. ( Poly ` CC ) -> f : CC --> CC ) |
| 28 |
|
ffn |
|- ( f : CC --> CC -> f Fn CC ) |
| 29 |
|
fniniseg |
|- ( f Fn CC -> ( x e. ( `' f " { 0 } ) <-> ( x e. CC /\ ( f ` x ) = 0 ) ) ) |
| 30 |
26 27 28 29
|
4syl |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( x e. ( `' f " { 0 } ) <-> ( x e. CC /\ ( f ` x ) = 0 ) ) ) |
| 31 |
30
|
biimpa |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( x e. CC /\ ( f ` x ) = 0 ) ) |
| 32 |
31
|
simprd |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` x ) = 0 ) |
| 33 |
31
|
simpld |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> x e. CC ) |
| 34 |
|
fvex |
|- ( f ` 0 ) e. _V |
| 35 |
34
|
fvconst2 |
|- ( x e. CC -> ( ( CC X. { ( f ` 0 ) } ) ` x ) = ( f ` 0 ) ) |
| 36 |
33 35
|
syl |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( ( CC X. { ( f ` 0 ) } ) ` x ) = ( f ` 0 ) ) |
| 37 |
25 32 36
|
3eqtr3rd |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( f ` 0 ) = 0 ) |
| 38 |
37
|
sneqd |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> { ( f ` 0 ) } = { 0 } ) |
| 39 |
38
|
xpeq2d |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> ( CC X. { ( f ` 0 ) } ) = ( CC X. { 0 } ) ) |
| 40 |
24 39
|
eqtrd |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = ( CC X. { 0 } ) ) |
| 41 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
| 42 |
40 41
|
eqtr4di |
|- ( ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) /\ x e. ( `' f " { 0 } ) ) -> f = 0p ) |
| 43 |
42
|
ex |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( x e. ( `' f " { 0 } ) -> f = 0p ) ) |
| 44 |
43
|
necon3ad |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( f =/= 0p -> -. x e. ( `' f " { 0 } ) ) ) |
| 45 |
18 44
|
mpd |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> -. x e. ( `' f " { 0 } ) ) |
| 46 |
45
|
eq0rdv |
|- ( ( f e. ( ( Poly ` CC ) \ { 0p } ) /\ ( deg ` f ) = 0 ) -> ( `' f " { 0 } ) = (/) ) |
| 47 |
46
|
ex |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( deg ` f ) = 0 -> ( `' f " { 0 } ) = (/) ) ) |
| 48 |
|
dgrcl |
|- ( f e. ( Poly ` CC ) -> ( deg ` f ) e. NN0 ) |
| 49 |
|
nn0ge0 |
|- ( ( deg ` f ) e. NN0 -> 0 <_ ( deg ` f ) ) |
| 50 |
20 48 49
|
3syl |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> 0 <_ ( deg ` f ) ) |
| 51 |
|
id |
|- ( ( `' f " { 0 } ) = (/) -> ( `' f " { 0 } ) = (/) ) |
| 52 |
|
0fi |
|- (/) e. Fin |
| 53 |
51 52
|
eqeltrdi |
|- ( ( `' f " { 0 } ) = (/) -> ( `' f " { 0 } ) e. Fin ) |
| 54 |
53
|
biantrurd |
|- ( ( `' f " { 0 } ) = (/) -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
| 55 |
|
fveq2 |
|- ( ( `' f " { 0 } ) = (/) -> ( # ` ( `' f " { 0 } ) ) = ( # ` (/) ) ) |
| 56 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 57 |
55 56
|
eqtrdi |
|- ( ( `' f " { 0 } ) = (/) -> ( # ` ( `' f " { 0 } ) ) = 0 ) |
| 58 |
57
|
breq1d |
|- ( ( `' f " { 0 } ) = (/) -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> 0 <_ ( deg ` f ) ) ) |
| 59 |
54 58
|
bitr3d |
|- ( ( `' f " { 0 } ) = (/) -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> 0 <_ ( deg ` f ) ) ) |
| 60 |
50 59
|
syl5ibrcom |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( `' f " { 0 } ) = (/) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
| 61 |
47 60
|
syld |
|- ( f e. ( ( Poly ` CC ) \ { 0p } ) -> ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
| 62 |
61
|
rgen |
|- A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = 0 -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) |
| 63 |
|
fveqeq2 |
|- ( f = g -> ( ( deg ` f ) = d <-> ( deg ` g ) = d ) ) |
| 64 |
|
cnveq |
|- ( f = g -> `' f = `' g ) |
| 65 |
64
|
imaeq1d |
|- ( f = g -> ( `' f " { 0 } ) = ( `' g " { 0 } ) ) |
| 66 |
65
|
eleq1d |
|- ( f = g -> ( ( `' f " { 0 } ) e. Fin <-> ( `' g " { 0 } ) e. Fin ) ) |
| 67 |
65
|
fveq2d |
|- ( f = g -> ( # ` ( `' f " { 0 } ) ) = ( # ` ( `' g " { 0 } ) ) ) |
| 68 |
|
fveq2 |
|- ( f = g -> ( deg ` f ) = ( deg ` g ) ) |
| 69 |
67 68
|
breq12d |
|- ( f = g -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) |
| 70 |
66 69
|
anbi12d |
|- ( f = g -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) |
| 71 |
63 70
|
imbi12d |
|- ( f = g -> ( ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) |
| 72 |
71
|
cbvralvw |
|- ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) |
| 73 |
50
|
ad2antlr |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> 0 <_ ( deg ` f ) ) |
| 74 |
73 59
|
syl5ibrcom |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) = (/) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
| 75 |
74
|
a1dd |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) = (/) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 76 |
|
n0 |
|- ( ( `' f " { 0 } ) =/= (/) <-> E. x x e. ( `' f " { 0 } ) ) |
| 77 |
|
eqid |
|- ( `' f " { 0 } ) = ( `' f " { 0 } ) |
| 78 |
|
simplll |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> d e. NN0 ) |
| 79 |
|
simpllr |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> f e. ( ( Poly ` CC ) \ { 0p } ) ) |
| 80 |
|
simplr |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> ( deg ` f ) = ( d + 1 ) ) |
| 81 |
|
simprl |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> x e. ( `' f " { 0 } ) ) |
| 82 |
|
simprr |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) |
| 83 |
77 78 79 80 81 82
|
fta1lem |
|- ( ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) /\ ( x e. ( `' f " { 0 } ) /\ A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) |
| 84 |
83
|
exp32 |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( x e. ( `' f " { 0 } ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 85 |
84
|
exlimdv |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( E. x x e. ( `' f " { 0 } ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 86 |
76 85
|
biimtrid |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( ( `' f " { 0 } ) =/= (/) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 87 |
75 86
|
pm2.61dne |
|- ( ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) /\ ( deg ` f ) = ( d + 1 ) ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
| 88 |
87
|
ex |
|- ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) -> ( ( deg ` f ) = ( d + 1 ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 89 |
88
|
com23 |
|- ( ( d e. NN0 /\ f e. ( ( Poly ` CC ) \ { 0p } ) ) -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 90 |
89
|
ralrimdva |
|- ( d e. NN0 -> ( A. g e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` g ) = d -> ( ( `' g " { 0 } ) e. Fin /\ ( # ` ( `' g " { 0 } ) ) <_ ( deg ` g ) ) ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 91 |
72 90
|
biimtrid |
|- ( d e. NN0 -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = d -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( d + 1 ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) ) |
| 92 |
7 10 13 16 62 91
|
nn0ind |
|- ( ( deg ` F ) e. NN0 -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
| 93 |
4 92
|
syl |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) ) |
| 94 |
|
plyssc |
|- ( Poly ` S ) C_ ( Poly ` CC ) |
| 95 |
94
|
sseli |
|- ( F e. ( Poly ` S ) -> F e. ( Poly ` CC ) ) |
| 96 |
|
eldifsn |
|- ( F e. ( ( Poly ` CC ) \ { 0p } ) <-> ( F e. ( Poly ` CC ) /\ F =/= 0p ) ) |
| 97 |
|
fveqeq2 |
|- ( f = F -> ( ( deg ` f ) = ( deg ` F ) <-> ( deg ` F ) = ( deg ` F ) ) ) |
| 98 |
|
cnveq |
|- ( f = F -> `' f = `' F ) |
| 99 |
98
|
imaeq1d |
|- ( f = F -> ( `' f " { 0 } ) = ( `' F " { 0 } ) ) |
| 100 |
99 1
|
eqtr4di |
|- ( f = F -> ( `' f " { 0 } ) = R ) |
| 101 |
100
|
eleq1d |
|- ( f = F -> ( ( `' f " { 0 } ) e. Fin <-> R e. Fin ) ) |
| 102 |
100
|
fveq2d |
|- ( f = F -> ( # ` ( `' f " { 0 } ) ) = ( # ` R ) ) |
| 103 |
|
fveq2 |
|- ( f = F -> ( deg ` f ) = ( deg ` F ) ) |
| 104 |
102 103
|
breq12d |
|- ( f = F -> ( ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) <-> ( # ` R ) <_ ( deg ` F ) ) ) |
| 105 |
101 104
|
anbi12d |
|- ( f = F -> ( ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) <-> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) |
| 106 |
97 105
|
imbi12d |
|- ( f = F -> ( ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) <-> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) |
| 107 |
106
|
rspcv |
|- ( F e. ( ( Poly ` CC ) \ { 0p } ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) |
| 108 |
96 107
|
sylbir |
|- ( ( F e. ( Poly ` CC ) /\ F =/= 0p ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) |
| 109 |
95 108
|
sylan |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( A. f e. ( ( Poly ` CC ) \ { 0p } ) ( ( deg ` f ) = ( deg ` F ) -> ( ( `' f " { 0 } ) e. Fin /\ ( # ` ( `' f " { 0 } ) ) <_ ( deg ` f ) ) ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) ) |
| 110 |
93 109
|
mpd |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( ( deg ` F ) = ( deg ` F ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) ) |
| 111 |
2 110
|
mpi |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |