| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vieta1.1 |
|- A = ( coeff ` F ) |
| 2 |
|
vieta1.2 |
|- N = ( deg ` F ) |
| 3 |
|
vieta1.3 |
|- R = ( `' F " { 0 } ) |
| 4 |
|
vieta1.4 |
|- ( ph -> F e. ( Poly ` S ) ) |
| 5 |
|
vieta1.5 |
|- ( ph -> ( # ` R ) = N ) |
| 6 |
|
vieta1lem.6 |
|- ( ph -> D e. NN ) |
| 7 |
|
vieta1lem.7 |
|- ( ph -> ( D + 1 ) = N ) |
| 8 |
|
vieta1lem.8 |
|- ( ph -> A. f e. ( Poly ` CC ) ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 9 |
|
vieta1lem.9 |
|- Q = ( F quot ( Xp oF - ( CC X. { z } ) ) ) |
| 10 |
6
|
peano2nnd |
|- ( ph -> ( D + 1 ) e. NN ) |
| 11 |
7 10
|
eqeltrrd |
|- ( ph -> N e. NN ) |
| 12 |
11
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 13 |
5 12
|
eqnetrd |
|- ( ph -> ( # ` R ) =/= 0 ) |
| 14 |
2 12
|
eqnetrrid |
|- ( ph -> ( deg ` F ) =/= 0 ) |
| 15 |
|
fveq2 |
|- ( F = 0p -> ( deg ` F ) = ( deg ` 0p ) ) |
| 16 |
|
dgr0 |
|- ( deg ` 0p ) = 0 |
| 17 |
15 16
|
eqtrdi |
|- ( F = 0p -> ( deg ` F ) = 0 ) |
| 18 |
17
|
necon3i |
|- ( ( deg ` F ) =/= 0 -> F =/= 0p ) |
| 19 |
14 18
|
syl |
|- ( ph -> F =/= 0p ) |
| 20 |
3
|
fta1 |
|- ( ( F e. ( Poly ` S ) /\ F =/= 0p ) -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |
| 21 |
4 19 20
|
syl2anc |
|- ( ph -> ( R e. Fin /\ ( # ` R ) <_ ( deg ` F ) ) ) |
| 22 |
21
|
simpld |
|- ( ph -> R e. Fin ) |
| 23 |
|
hasheq0 |
|- ( R e. Fin -> ( ( # ` R ) = 0 <-> R = (/) ) ) |
| 24 |
22 23
|
syl |
|- ( ph -> ( ( # ` R ) = 0 <-> R = (/) ) ) |
| 25 |
24
|
necon3bid |
|- ( ph -> ( ( # ` R ) =/= 0 <-> R =/= (/) ) ) |
| 26 |
13 25
|
mpbid |
|- ( ph -> R =/= (/) ) |
| 27 |
|
n0 |
|- ( R =/= (/) <-> E. z z e. R ) |
| 28 |
26 27
|
sylib |
|- ( ph -> E. z z e. R ) |
| 29 |
|
incom |
|- ( { z } i^i ( `' Q " { 0 } ) ) = ( ( `' Q " { 0 } ) i^i { z } ) |
| 30 |
1 2 3 4 5 6 7 8 9
|
vieta1lem1 |
|- ( ( ph /\ z e. R ) -> ( Q e. ( Poly ` CC ) /\ D = ( deg ` Q ) ) ) |
| 31 |
30
|
simprd |
|- ( ( ph /\ z e. R ) -> D = ( deg ` Q ) ) |
| 32 |
30
|
simpld |
|- ( ( ph /\ z e. R ) -> Q e. ( Poly ` CC ) ) |
| 33 |
|
dgrcl |
|- ( Q e. ( Poly ` CC ) -> ( deg ` Q ) e. NN0 ) |
| 34 |
32 33
|
syl |
|- ( ( ph /\ z e. R ) -> ( deg ` Q ) e. NN0 ) |
| 35 |
34
|
nn0red |
|- ( ( ph /\ z e. R ) -> ( deg ` Q ) e. RR ) |
| 36 |
31 35
|
eqeltrd |
|- ( ( ph /\ z e. R ) -> D e. RR ) |
| 37 |
36
|
ltp1d |
|- ( ( ph /\ z e. R ) -> D < ( D + 1 ) ) |
| 38 |
36 37
|
gtned |
|- ( ( ph /\ z e. R ) -> ( D + 1 ) =/= D ) |
| 39 |
|
snssi |
|- ( z e. ( `' Q " { 0 } ) -> { z } C_ ( `' Q " { 0 } ) ) |
| 40 |
|
ssequn1 |
|- ( { z } C_ ( `' Q " { 0 } ) <-> ( { z } u. ( `' Q " { 0 } ) ) = ( `' Q " { 0 } ) ) |
| 41 |
39 40
|
sylib |
|- ( z e. ( `' Q " { 0 } ) -> ( { z } u. ( `' Q " { 0 } ) ) = ( `' Q " { 0 } ) ) |
| 42 |
41
|
fveq2d |
|- ( z e. ( `' Q " { 0 } ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) = ( # ` ( `' Q " { 0 } ) ) ) |
| 43 |
4
|
adantr |
|- ( ( ph /\ z e. R ) -> F e. ( Poly ` S ) ) |
| 44 |
|
cnvimass |
|- ( `' F " { 0 } ) C_ dom F |
| 45 |
3 44
|
eqsstri |
|- R C_ dom F |
| 46 |
|
plyf |
|- ( F e. ( Poly ` S ) -> F : CC --> CC ) |
| 47 |
|
fdm |
|- ( F : CC --> CC -> dom F = CC ) |
| 48 |
4 46 47
|
3syl |
|- ( ph -> dom F = CC ) |
| 49 |
45 48
|
sseqtrid |
|- ( ph -> R C_ CC ) |
| 50 |
49
|
sselda |
|- ( ( ph /\ z e. R ) -> z e. CC ) |
| 51 |
3
|
eleq2i |
|- ( z e. R <-> z e. ( `' F " { 0 } ) ) |
| 52 |
|
ffn |
|- ( F : CC --> CC -> F Fn CC ) |
| 53 |
|
fniniseg |
|- ( F Fn CC -> ( z e. ( `' F " { 0 } ) <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
| 54 |
4 46 52 53
|
4syl |
|- ( ph -> ( z e. ( `' F " { 0 } ) <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
| 55 |
51 54
|
bitrid |
|- ( ph -> ( z e. R <-> ( z e. CC /\ ( F ` z ) = 0 ) ) ) |
| 56 |
55
|
simplbda |
|- ( ( ph /\ z e. R ) -> ( F ` z ) = 0 ) |
| 57 |
|
eqid |
|- ( Xp oF - ( CC X. { z } ) ) = ( Xp oF - ( CC X. { z } ) ) |
| 58 |
57
|
facth |
|- ( ( F e. ( Poly ` S ) /\ z e. CC /\ ( F ` z ) = 0 ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) ) |
| 59 |
43 50 56 58
|
syl3anc |
|- ( ( ph /\ z e. R ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) ) |
| 60 |
9
|
oveq2i |
|- ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = ( ( Xp oF - ( CC X. { z } ) ) oF x. ( F quot ( Xp oF - ( CC X. { z } ) ) ) ) |
| 61 |
59 60
|
eqtr4di |
|- ( ( ph /\ z e. R ) -> F = ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) |
| 62 |
61
|
cnveqd |
|- ( ( ph /\ z e. R ) -> `' F = `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) |
| 63 |
62
|
imaeq1d |
|- ( ( ph /\ z e. R ) -> ( `' F " { 0 } ) = ( `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) " { 0 } ) ) |
| 64 |
3 63
|
eqtrid |
|- ( ( ph /\ z e. R ) -> R = ( `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) " { 0 } ) ) |
| 65 |
|
cnex |
|- CC e. _V |
| 66 |
57
|
plyremlem |
|- ( z e. CC -> ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) = { z } ) ) |
| 67 |
50 66
|
syl |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 /\ ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) = { z } ) ) |
| 68 |
67
|
simp1d |
|- ( ( ph /\ z e. R ) -> ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) ) |
| 69 |
|
plyf |
|- ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) -> ( Xp oF - ( CC X. { z } ) ) : CC --> CC ) |
| 70 |
68 69
|
syl |
|- ( ( ph /\ z e. R ) -> ( Xp oF - ( CC X. { z } ) ) : CC --> CC ) |
| 71 |
|
plyf |
|- ( Q e. ( Poly ` CC ) -> Q : CC --> CC ) |
| 72 |
32 71
|
syl |
|- ( ( ph /\ z e. R ) -> Q : CC --> CC ) |
| 73 |
|
ofmulrt |
|- ( ( CC e. _V /\ ( Xp oF - ( CC X. { z } ) ) : CC --> CC /\ Q : CC --> CC ) -> ( `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) " { 0 } ) = ( ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) u. ( `' Q " { 0 } ) ) ) |
| 74 |
65 70 72 73
|
mp3an2i |
|- ( ( ph /\ z e. R ) -> ( `' ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) " { 0 } ) = ( ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) u. ( `' Q " { 0 } ) ) ) |
| 75 |
67
|
simp3d |
|- ( ( ph /\ z e. R ) -> ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) = { z } ) |
| 76 |
75
|
uneq1d |
|- ( ( ph /\ z e. R ) -> ( ( `' ( Xp oF - ( CC X. { z } ) ) " { 0 } ) u. ( `' Q " { 0 } ) ) = ( { z } u. ( `' Q " { 0 } ) ) ) |
| 77 |
64 74 76
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> R = ( { z } u. ( `' Q " { 0 } ) ) ) |
| 78 |
77
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( # ` R ) = ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) ) |
| 79 |
5 7
|
eqtr4d |
|- ( ph -> ( # ` R ) = ( D + 1 ) ) |
| 80 |
79
|
adantr |
|- ( ( ph /\ z e. R ) -> ( # ` R ) = ( D + 1 ) ) |
| 81 |
78 80
|
eqtr3d |
|- ( ( ph /\ z e. R ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) = ( D + 1 ) ) |
| 82 |
19
|
adantr |
|- ( ( ph /\ z e. R ) -> F =/= 0p ) |
| 83 |
61 82
|
eqnetrrd |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) =/= 0p ) |
| 84 |
|
plymul0or |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ Q e. ( Poly ` CC ) ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = 0p <-> ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
| 85 |
68 32 84
|
syl2anc |
|- ( ( ph /\ z e. R ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) = 0p <-> ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
| 86 |
85
|
necon3abid |
|- ( ( ph /\ z e. R ) -> ( ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) =/= 0p <-> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) ) |
| 87 |
83 86
|
mpbid |
|- ( ( ph /\ z e. R ) -> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) |
| 88 |
|
neanior |
|- ( ( ( Xp oF - ( CC X. { z } ) ) =/= 0p /\ Q =/= 0p ) <-> -. ( ( Xp oF - ( CC X. { z } ) ) = 0p \/ Q = 0p ) ) |
| 89 |
87 88
|
sylibr |
|- ( ( ph /\ z e. R ) -> ( ( Xp oF - ( CC X. { z } ) ) =/= 0p /\ Q =/= 0p ) ) |
| 90 |
89
|
simprd |
|- ( ( ph /\ z e. R ) -> Q =/= 0p ) |
| 91 |
|
eqid |
|- ( `' Q " { 0 } ) = ( `' Q " { 0 } ) |
| 92 |
91
|
fta1 |
|- ( ( Q e. ( Poly ` CC ) /\ Q =/= 0p ) -> ( ( `' Q " { 0 } ) e. Fin /\ ( # ` ( `' Q " { 0 } ) ) <_ ( deg ` Q ) ) ) |
| 93 |
32 90 92
|
syl2anc |
|- ( ( ph /\ z e. R ) -> ( ( `' Q " { 0 } ) e. Fin /\ ( # ` ( `' Q " { 0 } ) ) <_ ( deg ` Q ) ) ) |
| 94 |
93
|
simprd |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) <_ ( deg ` Q ) ) |
| 95 |
94 31
|
breqtrrd |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) <_ D ) |
| 96 |
|
snfi |
|- { z } e. Fin |
| 97 |
93
|
simpld |
|- ( ( ph /\ z e. R ) -> ( `' Q " { 0 } ) e. Fin ) |
| 98 |
|
hashun2 |
|- ( ( { z } e. Fin /\ ( `' Q " { 0 } ) e. Fin ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) <_ ( ( # ` { z } ) + ( # ` ( `' Q " { 0 } ) ) ) ) |
| 99 |
96 97 98
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) <_ ( ( # ` { z } ) + ( # ` ( `' Q " { 0 } ) ) ) ) |
| 100 |
|
ax-1cn |
|- 1 e. CC |
| 101 |
6
|
nncnd |
|- ( ph -> D e. CC ) |
| 102 |
101
|
adantr |
|- ( ( ph /\ z e. R ) -> D e. CC ) |
| 103 |
|
addcom |
|- ( ( 1 e. CC /\ D e. CC ) -> ( 1 + D ) = ( D + 1 ) ) |
| 104 |
100 102 103
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( 1 + D ) = ( D + 1 ) ) |
| 105 |
81 104
|
eqtr4d |
|- ( ( ph /\ z e. R ) -> ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) = ( 1 + D ) ) |
| 106 |
|
hashsng |
|- ( z e. R -> ( # ` { z } ) = 1 ) |
| 107 |
106
|
adantl |
|- ( ( ph /\ z e. R ) -> ( # ` { z } ) = 1 ) |
| 108 |
107
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( # ` { z } ) + ( # ` ( `' Q " { 0 } ) ) ) = ( 1 + ( # ` ( `' Q " { 0 } ) ) ) ) |
| 109 |
99 105 108
|
3brtr3d |
|- ( ( ph /\ z e. R ) -> ( 1 + D ) <_ ( 1 + ( # ` ( `' Q " { 0 } ) ) ) ) |
| 110 |
|
hashcl |
|- ( ( `' Q " { 0 } ) e. Fin -> ( # ` ( `' Q " { 0 } ) ) e. NN0 ) |
| 111 |
97 110
|
syl |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) e. NN0 ) |
| 112 |
111
|
nn0red |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) e. RR ) |
| 113 |
|
1red |
|- ( ( ph /\ z e. R ) -> 1 e. RR ) |
| 114 |
36 112 113
|
leadd2d |
|- ( ( ph /\ z e. R ) -> ( D <_ ( # ` ( `' Q " { 0 } ) ) <-> ( 1 + D ) <_ ( 1 + ( # ` ( `' Q " { 0 } ) ) ) ) ) |
| 115 |
109 114
|
mpbird |
|- ( ( ph /\ z e. R ) -> D <_ ( # ` ( `' Q " { 0 } ) ) ) |
| 116 |
112 36
|
letri3d |
|- ( ( ph /\ z e. R ) -> ( ( # ` ( `' Q " { 0 } ) ) = D <-> ( ( # ` ( `' Q " { 0 } ) ) <_ D /\ D <_ ( # ` ( `' Q " { 0 } ) ) ) ) ) |
| 117 |
95 115 116
|
mpbir2and |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) = D ) |
| 118 |
81 117
|
eqeq12d |
|- ( ( ph /\ z e. R ) -> ( ( # ` ( { z } u. ( `' Q " { 0 } ) ) ) = ( # ` ( `' Q " { 0 } ) ) <-> ( D + 1 ) = D ) ) |
| 119 |
42 118
|
imbitrid |
|- ( ( ph /\ z e. R ) -> ( z e. ( `' Q " { 0 } ) -> ( D + 1 ) = D ) ) |
| 120 |
119
|
necon3ad |
|- ( ( ph /\ z e. R ) -> ( ( D + 1 ) =/= D -> -. z e. ( `' Q " { 0 } ) ) ) |
| 121 |
38 120
|
mpd |
|- ( ( ph /\ z e. R ) -> -. z e. ( `' Q " { 0 } ) ) |
| 122 |
|
disjsn |
|- ( ( ( `' Q " { 0 } ) i^i { z } ) = (/) <-> -. z e. ( `' Q " { 0 } ) ) |
| 123 |
121 122
|
sylibr |
|- ( ( ph /\ z e. R ) -> ( ( `' Q " { 0 } ) i^i { z } ) = (/) ) |
| 124 |
29 123
|
eqtrid |
|- ( ( ph /\ z e. R ) -> ( { z } i^i ( `' Q " { 0 } ) ) = (/) ) |
| 125 |
22
|
adantr |
|- ( ( ph /\ z e. R ) -> R e. Fin ) |
| 126 |
49
|
adantr |
|- ( ( ph /\ z e. R ) -> R C_ CC ) |
| 127 |
126
|
sselda |
|- ( ( ( ph /\ z e. R ) /\ x e. R ) -> x e. CC ) |
| 128 |
124 77 125 127
|
fsumsplit |
|- ( ( ph /\ z e. R ) -> sum_ x e. R x = ( sum_ x e. { z } x + sum_ x e. ( `' Q " { 0 } ) x ) ) |
| 129 |
|
id |
|- ( x = z -> x = z ) |
| 130 |
129
|
sumsn |
|- ( ( z e. CC /\ z e. CC ) -> sum_ x e. { z } x = z ) |
| 131 |
50 50 130
|
syl2anc |
|- ( ( ph /\ z e. R ) -> sum_ x e. { z } x = z ) |
| 132 |
50
|
negnegd |
|- ( ( ph /\ z e. R ) -> -u -u z = z ) |
| 133 |
131 132
|
eqtr4d |
|- ( ( ph /\ z e. R ) -> sum_ x e. { z } x = -u -u z ) |
| 134 |
117 31
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) |
| 135 |
|
fveq2 |
|- ( f = Q -> ( deg ` f ) = ( deg ` Q ) ) |
| 136 |
135
|
eqeq2d |
|- ( f = Q -> ( D = ( deg ` f ) <-> D = ( deg ` Q ) ) ) |
| 137 |
|
cnveq |
|- ( f = Q -> `' f = `' Q ) |
| 138 |
137
|
imaeq1d |
|- ( f = Q -> ( `' f " { 0 } ) = ( `' Q " { 0 } ) ) |
| 139 |
138
|
fveq2d |
|- ( f = Q -> ( # ` ( `' f " { 0 } ) ) = ( # ` ( `' Q " { 0 } ) ) ) |
| 140 |
139 135
|
eqeq12d |
|- ( f = Q -> ( ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) <-> ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) ) |
| 141 |
136 140
|
anbi12d |
|- ( f = Q -> ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) <-> ( D = ( deg ` Q ) /\ ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) ) ) |
| 142 |
138
|
sumeq1d |
|- ( f = Q -> sum_ x e. ( `' f " { 0 } ) x = sum_ x e. ( `' Q " { 0 } ) x ) |
| 143 |
|
fveq2 |
|- ( f = Q -> ( coeff ` f ) = ( coeff ` Q ) ) |
| 144 |
135
|
oveq1d |
|- ( f = Q -> ( ( deg ` f ) - 1 ) = ( ( deg ` Q ) - 1 ) ) |
| 145 |
143 144
|
fveq12d |
|- ( f = Q -> ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) = ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) ) |
| 146 |
143 135
|
fveq12d |
|- ( f = Q -> ( ( coeff ` f ) ` ( deg ` f ) ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
| 147 |
145 146
|
oveq12d |
|- ( f = Q -> ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) = ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
| 148 |
147
|
negeqd |
|- ( f = Q -> -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
| 149 |
142 148
|
eqeq12d |
|- ( f = Q -> ( sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) <-> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) ) |
| 150 |
141 149
|
imbi12d |
|- ( f = Q -> ( ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) <-> ( ( D = ( deg ` Q ) /\ ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) -> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) ) ) |
| 151 |
8
|
adantr |
|- ( ( ph /\ z e. R ) -> A. f e. ( Poly ` CC ) ( ( D = ( deg ` f ) /\ ( # ` ( `' f " { 0 } ) ) = ( deg ` f ) ) -> sum_ x e. ( `' f " { 0 } ) x = -u ( ( ( coeff ` f ) ` ( ( deg ` f ) - 1 ) ) / ( ( coeff ` f ) ` ( deg ` f ) ) ) ) ) |
| 152 |
150 151 32
|
rspcdva |
|- ( ( ph /\ z e. R ) -> ( ( D = ( deg ` Q ) /\ ( # ` ( `' Q " { 0 } ) ) = ( deg ` Q ) ) -> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) ) |
| 153 |
31 134 152
|
mp2and |
|- ( ( ph /\ z e. R ) -> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
| 154 |
31
|
fvoveq1d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( D - 1 ) ) = ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) ) |
| 155 |
61
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( coeff ` F ) = ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ) |
| 156 |
1 155
|
eqtrid |
|- ( ( ph /\ z e. R ) -> A = ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ) |
| 157 |
61
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( deg ` F ) = ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ) |
| 158 |
67
|
simp2d |
|- ( ( ph /\ z e. R ) -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 1 ) |
| 159 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 160 |
159
|
a1i |
|- ( ( ph /\ z e. R ) -> 1 =/= 0 ) |
| 161 |
158 160
|
eqnetrd |
|- ( ( ph /\ z e. R ) -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) =/= 0 ) |
| 162 |
|
fveq2 |
|- ( ( Xp oF - ( CC X. { z } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = ( deg ` 0p ) ) |
| 163 |
162 16
|
eqtrdi |
|- ( ( Xp oF - ( CC X. { z } ) ) = 0p -> ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = 0 ) |
| 164 |
163
|
necon3i |
|- ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) =/= 0 -> ( Xp oF - ( CC X. { z } ) ) =/= 0p ) |
| 165 |
161 164
|
syl |
|- ( ( ph /\ z e. R ) -> ( Xp oF - ( CC X. { z } ) ) =/= 0p ) |
| 166 |
|
eqid |
|- ( deg ` ( Xp oF - ( CC X. { z } ) ) ) = ( deg ` ( Xp oF - ( CC X. { z } ) ) ) |
| 167 |
|
eqid |
|- ( deg ` Q ) = ( deg ` Q ) |
| 168 |
166 167
|
dgrmul |
|- ( ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ ( Xp oF - ( CC X. { z } ) ) =/= 0p ) /\ ( Q e. ( Poly ` CC ) /\ Q =/= 0p ) ) -> ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
| 169 |
68 165 32 90 168
|
syl22anc |
|- ( ( ph /\ z e. R ) -> ( deg ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
| 170 |
157 169
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( deg ` F ) = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
| 171 |
2 170
|
eqtrid |
|- ( ( ph /\ z e. R ) -> N = ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) |
| 172 |
156 171
|
fveq12d |
|- ( ( ph /\ z e. R ) -> ( A ` N ) = ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) ) |
| 173 |
|
eqid |
|- ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) = ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) |
| 174 |
|
eqid |
|- ( coeff ` Q ) = ( coeff ` Q ) |
| 175 |
173 174 166 167
|
coemulhi |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ Q e. ( Poly ` CC ) ) -> ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
| 176 |
68 32 175
|
syl2anc |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( ( deg ` ( Xp oF - ( CC X. { z } ) ) ) + ( deg ` Q ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
| 177 |
158
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) = ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) ) |
| 178 |
|
ssid |
|- CC C_ CC |
| 179 |
|
plyid |
|- ( ( CC C_ CC /\ 1 e. CC ) -> Xp e. ( Poly ` CC ) ) |
| 180 |
178 100 179
|
mp2an |
|- Xp e. ( Poly ` CC ) |
| 181 |
|
plyconst |
|- ( ( CC C_ CC /\ z e. CC ) -> ( CC X. { z } ) e. ( Poly ` CC ) ) |
| 182 |
178 50 181
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( CC X. { z } ) e. ( Poly ` CC ) ) |
| 183 |
|
eqid |
|- ( coeff ` Xp ) = ( coeff ` Xp ) |
| 184 |
|
eqid |
|- ( coeff ` ( CC X. { z } ) ) = ( coeff ` ( CC X. { z } ) ) |
| 185 |
183 184
|
coesub |
|- ( ( Xp e. ( Poly ` CC ) /\ ( CC X. { z } ) e. ( Poly ` CC ) ) -> ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) = ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ) |
| 186 |
180 182 185
|
sylancr |
|- ( ( ph /\ z e. R ) -> ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) = ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ) |
| 187 |
186
|
fveq1d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) = ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 1 ) ) |
| 188 |
|
1nn0 |
|- 1 e. NN0 |
| 189 |
183
|
coef3 |
|- ( Xp e. ( Poly ` CC ) -> ( coeff ` Xp ) : NN0 --> CC ) |
| 190 |
|
ffn |
|- ( ( coeff ` Xp ) : NN0 --> CC -> ( coeff ` Xp ) Fn NN0 ) |
| 191 |
180 189 190
|
mp2b |
|- ( coeff ` Xp ) Fn NN0 |
| 192 |
191
|
a1i |
|- ( ( ph /\ z e. R ) -> ( coeff ` Xp ) Fn NN0 ) |
| 193 |
184
|
coef3 |
|- ( ( CC X. { z } ) e. ( Poly ` CC ) -> ( coeff ` ( CC X. { z } ) ) : NN0 --> CC ) |
| 194 |
|
ffn |
|- ( ( coeff ` ( CC X. { z } ) ) : NN0 --> CC -> ( coeff ` ( CC X. { z } ) ) Fn NN0 ) |
| 195 |
182 193 194
|
3syl |
|- ( ( ph /\ z e. R ) -> ( coeff ` ( CC X. { z } ) ) Fn NN0 ) |
| 196 |
|
nn0ex |
|- NN0 e. _V |
| 197 |
196
|
a1i |
|- ( ( ph /\ z e. R ) -> NN0 e. _V ) |
| 198 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
| 199 |
|
coeidp |
|- ( 1 e. NN0 -> ( ( coeff ` Xp ) ` 1 ) = if ( 1 = 1 , 1 , 0 ) ) |
| 200 |
199
|
adantl |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( coeff ` Xp ) ` 1 ) = if ( 1 = 1 , 1 , 0 ) ) |
| 201 |
|
eqid |
|- 1 = 1 |
| 202 |
201
|
iftruei |
|- if ( 1 = 1 , 1 , 0 ) = 1 |
| 203 |
200 202
|
eqtrdi |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( coeff ` Xp ) ` 1 ) = 1 ) |
| 204 |
|
0lt1 |
|- 0 < 1 |
| 205 |
|
0re |
|- 0 e. RR |
| 206 |
|
1re |
|- 1 e. RR |
| 207 |
205 206
|
ltnlei |
|- ( 0 < 1 <-> -. 1 <_ 0 ) |
| 208 |
204 207
|
mpbi |
|- -. 1 <_ 0 |
| 209 |
50
|
adantr |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> z e. CC ) |
| 210 |
|
0dgr |
|- ( z e. CC -> ( deg ` ( CC X. { z } ) ) = 0 ) |
| 211 |
209 210
|
syl |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( deg ` ( CC X. { z } ) ) = 0 ) |
| 212 |
211
|
breq2d |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( 1 <_ ( deg ` ( CC X. { z } ) ) <-> 1 <_ 0 ) ) |
| 213 |
208 212
|
mtbiri |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> -. 1 <_ ( deg ` ( CC X. { z } ) ) ) |
| 214 |
|
eqid |
|- ( deg ` ( CC X. { z } ) ) = ( deg ` ( CC X. { z } ) ) |
| 215 |
184 214
|
dgrub |
|- ( ( ( CC X. { z } ) e. ( Poly ` CC ) /\ 1 e. NN0 /\ ( ( coeff ` ( CC X. { z } ) ) ` 1 ) =/= 0 ) -> 1 <_ ( deg ` ( CC X. { z } ) ) ) |
| 216 |
215
|
3expia |
|- ( ( ( CC X. { z } ) e. ( Poly ` CC ) /\ 1 e. NN0 ) -> ( ( ( coeff ` ( CC X. { z } ) ) ` 1 ) =/= 0 -> 1 <_ ( deg ` ( CC X. { z } ) ) ) ) |
| 217 |
182 216
|
sylan |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( ( coeff ` ( CC X. { z } ) ) ` 1 ) =/= 0 -> 1 <_ ( deg ` ( CC X. { z } ) ) ) ) |
| 218 |
217
|
necon1bd |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( -. 1 <_ ( deg ` ( CC X. { z } ) ) -> ( ( coeff ` ( CC X. { z } ) ) ` 1 ) = 0 ) ) |
| 219 |
213 218
|
mpd |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( coeff ` ( CC X. { z } ) ) ` 1 ) = 0 ) |
| 220 |
192 195 197 197 198 203 219
|
ofval |
|- ( ( ( ph /\ z e. R ) /\ 1 e. NN0 ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 1 ) = ( 1 - 0 ) ) |
| 221 |
188 220
|
mpan2 |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 1 ) = ( 1 - 0 ) ) |
| 222 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 223 |
221 222
|
eqtrdi |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 1 ) = 1 ) |
| 224 |
187 223
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) = 1 ) |
| 225 |
177 224
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) = 1 ) |
| 226 |
225
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) = ( 1 x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
| 227 |
174
|
coef3 |
|- ( Q e. ( Poly ` CC ) -> ( coeff ` Q ) : NN0 --> CC ) |
| 228 |
32 227
|
syl |
|- ( ( ph /\ z e. R ) -> ( coeff ` Q ) : NN0 --> CC ) |
| 229 |
228 34
|
ffvelcdmd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( deg ` Q ) ) e. CC ) |
| 230 |
229
|
mullidd |
|- ( ( ph /\ z e. R ) -> ( 1 x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
| 231 |
226 230
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) x. ( ( coeff ` Q ) ` ( deg ` Q ) ) ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
| 232 |
172 176 231
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> ( A ` N ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
| 233 |
154 232
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) = ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
| 234 |
233
|
negeqd |
|- ( ( ph /\ z e. R ) -> -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) = -u ( ( ( coeff ` Q ) ` ( ( deg ` Q ) - 1 ) ) / ( ( coeff ` Q ) ` ( deg ` Q ) ) ) ) |
| 235 |
153 234
|
eqtr4d |
|- ( ( ph /\ z e. R ) -> sum_ x e. ( `' Q " { 0 } ) x = -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) |
| 236 |
133 235
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( sum_ x e. { z } x + sum_ x e. ( `' Q " { 0 } ) x ) = ( -u -u z + -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) ) |
| 237 |
50
|
negcld |
|- ( ( ph /\ z e. R ) -> -u z e. CC ) |
| 238 |
|
nnm1nn0 |
|- ( D e. NN -> ( D - 1 ) e. NN0 ) |
| 239 |
6 238
|
syl |
|- ( ph -> ( D - 1 ) e. NN0 ) |
| 240 |
239
|
adantr |
|- ( ( ph /\ z e. R ) -> ( D - 1 ) e. NN0 ) |
| 241 |
228 240
|
ffvelcdmd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( D - 1 ) ) e. CC ) |
| 242 |
232 229
|
eqeltrd |
|- ( ( ph /\ z e. R ) -> ( A ` N ) e. CC ) |
| 243 |
2 1
|
dgreq0 |
|- ( F e. ( Poly ` S ) -> ( F = 0p <-> ( A ` N ) = 0 ) ) |
| 244 |
43 243
|
syl |
|- ( ( ph /\ z e. R ) -> ( F = 0p <-> ( A ` N ) = 0 ) ) |
| 245 |
244
|
necon3bid |
|- ( ( ph /\ z e. R ) -> ( F =/= 0p <-> ( A ` N ) =/= 0 ) ) |
| 246 |
82 245
|
mpbid |
|- ( ( ph /\ z e. R ) -> ( A ` N ) =/= 0 ) |
| 247 |
241 242 246
|
divcld |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) e. CC ) |
| 248 |
237 247
|
negdid |
|- ( ( ph /\ z e. R ) -> -u ( -u z + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = ( -u -u z + -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) ) |
| 249 |
237 242
|
mulcld |
|- ( ( ph /\ z e. R ) -> ( -u z x. ( A ` N ) ) e. CC ) |
| 250 |
249 241 242 246
|
divdird |
|- ( ( ph /\ z e. R ) -> ( ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) / ( A ` N ) ) = ( ( ( -u z x. ( A ` N ) ) / ( A ` N ) ) + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) ) |
| 251 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 252 |
11 251
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 253 |
252
|
adantr |
|- ( ( ph /\ z e. R ) -> ( N - 1 ) e. NN0 ) |
| 254 |
173 174
|
coemul |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ Q e. ( Poly ` CC ) /\ ( N - 1 ) e. NN0 ) -> ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( N - 1 ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
| 255 |
68 32 253 254
|
syl3anc |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( N - 1 ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
| 256 |
156
|
fveq1d |
|- ( ( ph /\ z e. R ) -> ( A ` ( N - 1 ) ) = ( ( coeff ` ( ( Xp oF - ( CC X. { z } ) ) oF x. Q ) ) ` ( N - 1 ) ) ) |
| 257 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 258 |
257
|
oveq2i |
|- ( 0 ... 1 ) = ( 0 ... ( 0 + 1 ) ) |
| 259 |
258
|
sumeq1i |
|- sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) |
| 260 |
|
0nn0 |
|- 0 e. NN0 |
| 261 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 262 |
260 261
|
eleqtri |
|- 0 e. ( ZZ>= ` 0 ) |
| 263 |
262
|
a1i |
|- ( ( ph /\ z e. R ) -> 0 e. ( ZZ>= ` 0 ) ) |
| 264 |
258
|
eleq2i |
|- ( k e. ( 0 ... 1 ) <-> k e. ( 0 ... ( 0 + 1 ) ) ) |
| 265 |
173
|
coef3 |
|- ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) -> ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) : NN0 --> CC ) |
| 266 |
68 265
|
syl |
|- ( ( ph /\ z e. R ) -> ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) : NN0 --> CC ) |
| 267 |
|
elfznn0 |
|- ( k e. ( 0 ... 1 ) -> k e. NN0 ) |
| 268 |
|
ffvelcdm |
|- ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) : NN0 --> CC /\ k e. NN0 ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) e. CC ) |
| 269 |
266 267 268
|
syl2an |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... 1 ) ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) e. CC ) |
| 270 |
7
|
oveq1d |
|- ( ph -> ( ( D + 1 ) - 1 ) = ( N - 1 ) ) |
| 271 |
|
pncan |
|- ( ( D e. CC /\ 1 e. CC ) -> ( ( D + 1 ) - 1 ) = D ) |
| 272 |
101 100 271
|
sylancl |
|- ( ph -> ( ( D + 1 ) - 1 ) = D ) |
| 273 |
270 272
|
eqtr3d |
|- ( ph -> ( N - 1 ) = D ) |
| 274 |
273
|
adantr |
|- ( ( ph /\ z e. R ) -> ( N - 1 ) = D ) |
| 275 |
6
|
adantr |
|- ( ( ph /\ z e. R ) -> D e. NN ) |
| 276 |
274 275
|
eqeltrd |
|- ( ( ph /\ z e. R ) -> ( N - 1 ) e. NN ) |
| 277 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 278 |
276 277
|
eleqtrdi |
|- ( ( ph /\ z e. R ) -> ( N - 1 ) e. ( ZZ>= ` 1 ) ) |
| 279 |
|
fzss2 |
|- ( ( N - 1 ) e. ( ZZ>= ` 1 ) -> ( 0 ... 1 ) C_ ( 0 ... ( N - 1 ) ) ) |
| 280 |
278 279
|
syl |
|- ( ( ph /\ z e. R ) -> ( 0 ... 1 ) C_ ( 0 ... ( N - 1 ) ) ) |
| 281 |
280
|
sselda |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... 1 ) ) -> k e. ( 0 ... ( N - 1 ) ) ) |
| 282 |
|
fznn0sub |
|- ( k e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) - k ) e. NN0 ) |
| 283 |
|
ffvelcdm |
|- ( ( ( coeff ` Q ) : NN0 --> CC /\ ( ( N - 1 ) - k ) e. NN0 ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) e. CC ) |
| 284 |
228 282 283
|
syl2an |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) e. CC ) |
| 285 |
281 284
|
syldan |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... 1 ) ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) e. CC ) |
| 286 |
269 285
|
mulcld |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... 1 ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) e. CC ) |
| 287 |
264 286
|
sylan2br |
|- ( ( ( ph /\ z e. R ) /\ k e. ( 0 ... ( 0 + 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) e. CC ) |
| 288 |
|
id |
|- ( k = ( 0 + 1 ) -> k = ( 0 + 1 ) ) |
| 289 |
288 257
|
eqtr4di |
|- ( k = ( 0 + 1 ) -> k = 1 ) |
| 290 |
289
|
fveq2d |
|- ( k = ( 0 + 1 ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) = ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) ) |
| 291 |
289
|
oveq2d |
|- ( k = ( 0 + 1 ) -> ( ( N - 1 ) - k ) = ( ( N - 1 ) - 1 ) ) |
| 292 |
291
|
fveq2d |
|- ( k = ( 0 + 1 ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) = ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) |
| 293 |
290 292
|
oveq12d |
|- ( k = ( 0 + 1 ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) ) |
| 294 |
263 287 293
|
fsump1 |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) + ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) ) ) |
| 295 |
259 294
|
eqtrid |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) + ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) ) ) |
| 296 |
|
eldifn |
|- ( k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) -> -. k e. ( 0 ... 1 ) ) |
| 297 |
296
|
adantl |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> -. k e. ( 0 ... 1 ) ) |
| 298 |
|
eldifi |
|- ( k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) -> k e. ( 0 ... ( N - 1 ) ) ) |
| 299 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
| 300 |
298 299
|
syl |
|- ( k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) -> k e. NN0 ) |
| 301 |
173 166
|
dgrub |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ k e. NN0 /\ ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) =/= 0 ) -> k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) |
| 302 |
301
|
3expia |
|- ( ( ( Xp oF - ( CC X. { z } ) ) e. ( Poly ` CC ) /\ k e. NN0 ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) =/= 0 -> k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) ) |
| 303 |
68 300 302
|
syl2an |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) =/= 0 -> k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) ) |
| 304 |
|
elfzuz |
|- ( k e. ( 0 ... ( N - 1 ) ) -> k e. ( ZZ>= ` 0 ) ) |
| 305 |
298 304
|
syl |
|- ( k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) -> k e. ( ZZ>= ` 0 ) ) |
| 306 |
305
|
adantl |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> k e. ( ZZ>= ` 0 ) ) |
| 307 |
|
1z |
|- 1 e. ZZ |
| 308 |
|
elfz5 |
|- ( ( k e. ( ZZ>= ` 0 ) /\ 1 e. ZZ ) -> ( k e. ( 0 ... 1 ) <-> k <_ 1 ) ) |
| 309 |
306 307 308
|
sylancl |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( k e. ( 0 ... 1 ) <-> k <_ 1 ) ) |
| 310 |
158
|
breq2d |
|- ( ( ph /\ z e. R ) -> ( k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) <-> k <_ 1 ) ) |
| 311 |
310
|
adantr |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) <-> k <_ 1 ) ) |
| 312 |
309 311
|
bitr4d |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( k e. ( 0 ... 1 ) <-> k <_ ( deg ` ( Xp oF - ( CC X. { z } ) ) ) ) ) |
| 313 |
303 312
|
sylibrd |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) =/= 0 -> k e. ( 0 ... 1 ) ) ) |
| 314 |
313
|
necon1bd |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( -. k e. ( 0 ... 1 ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) = 0 ) ) |
| 315 |
297 314
|
mpd |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) = 0 ) |
| 316 |
315
|
oveq1d |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( 0 x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
| 317 |
298 284
|
sylan2 |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) e. CC ) |
| 318 |
317
|
mul02d |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( 0 x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = 0 ) |
| 319 |
316 318
|
eqtrd |
|- ( ( ( ph /\ z e. R ) /\ k e. ( ( 0 ... ( N - 1 ) ) \ ( 0 ... 1 ) ) ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = 0 ) |
| 320 |
|
fzfid |
|- ( ( ph /\ z e. R ) -> ( 0 ... ( N - 1 ) ) e. Fin ) |
| 321 |
280 286 319 320
|
fsumss |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... 1 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
| 322 |
|
0z |
|- 0 e. ZZ |
| 323 |
186
|
fveq1d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) = ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 0 ) ) |
| 324 |
|
coeidp |
|- ( 0 e. NN0 -> ( ( coeff ` Xp ) ` 0 ) = if ( 0 = 1 , 1 , 0 ) ) |
| 325 |
159
|
nesymi |
|- -. 0 = 1 |
| 326 |
325
|
iffalsei |
|- if ( 0 = 1 , 1 , 0 ) = 0 |
| 327 |
324 326
|
eqtrdi |
|- ( 0 e. NN0 -> ( ( coeff ` Xp ) ` 0 ) = 0 ) |
| 328 |
327
|
adantl |
|- ( ( ( ph /\ z e. R ) /\ 0 e. NN0 ) -> ( ( coeff ` Xp ) ` 0 ) = 0 ) |
| 329 |
184
|
coefv0 |
|- ( ( CC X. { z } ) e. ( Poly ` CC ) -> ( ( CC X. { z } ) ` 0 ) = ( ( coeff ` ( CC X. { z } ) ) ` 0 ) ) |
| 330 |
182 329
|
syl |
|- ( ( ph /\ z e. R ) -> ( ( CC X. { z } ) ` 0 ) = ( ( coeff ` ( CC X. { z } ) ) ` 0 ) ) |
| 331 |
|
0cn |
|- 0 e. CC |
| 332 |
|
vex |
|- z e. _V |
| 333 |
332
|
fvconst2 |
|- ( 0 e. CC -> ( ( CC X. { z } ) ` 0 ) = z ) |
| 334 |
331 333
|
ax-mp |
|- ( ( CC X. { z } ) ` 0 ) = z |
| 335 |
330 334
|
eqtr3di |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( CC X. { z } ) ) ` 0 ) = z ) |
| 336 |
335
|
adantr |
|- ( ( ( ph /\ z e. R ) /\ 0 e. NN0 ) -> ( ( coeff ` ( CC X. { z } ) ) ` 0 ) = z ) |
| 337 |
192 195 197 197 198 328 336
|
ofval |
|- ( ( ( ph /\ z e. R ) /\ 0 e. NN0 ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 0 ) = ( 0 - z ) ) |
| 338 |
260 337
|
mpan2 |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 0 ) = ( 0 - z ) ) |
| 339 |
|
df-neg |
|- -u z = ( 0 - z ) |
| 340 |
338 339
|
eqtr4di |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` Xp ) oF - ( coeff ` ( CC X. { z } ) ) ) ` 0 ) = -u z ) |
| 341 |
323 340
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) = -u z ) |
| 342 |
274
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( N - 1 ) - 0 ) = ( D - 0 ) ) |
| 343 |
102
|
subid1d |
|- ( ( ph /\ z e. R ) -> ( D - 0 ) = D ) |
| 344 |
342 343 31
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( N - 1 ) - 0 ) = ( deg ` Q ) ) |
| 345 |
344
|
fveq2d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) = ( ( coeff ` Q ) ` ( deg ` Q ) ) ) |
| 346 |
345 232
|
eqtr4d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) = ( A ` N ) ) |
| 347 |
341 346
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) = ( -u z x. ( A ` N ) ) ) |
| 348 |
347 249
|
eqeltrd |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) e. CC ) |
| 349 |
|
fveq2 |
|- ( k = 0 -> ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) = ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) ) |
| 350 |
|
oveq2 |
|- ( k = 0 -> ( ( N - 1 ) - k ) = ( ( N - 1 ) - 0 ) ) |
| 351 |
350
|
fveq2d |
|- ( k = 0 -> ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) = ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) |
| 352 |
349 351
|
oveq12d |
|- ( k = 0 -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) ) |
| 353 |
352
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) ) |
| 354 |
322 348 353
|
sylancr |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 0 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 0 ) ) ) ) |
| 355 |
354 347
|
eqtrd |
|- ( ( ph /\ z e. R ) -> sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) = ( -u z x. ( A ` N ) ) ) |
| 356 |
274
|
fvoveq1d |
|- ( ( ph /\ z e. R ) -> ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) = ( ( coeff ` Q ) ` ( D - 1 ) ) ) |
| 357 |
224 356
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) = ( 1 x. ( ( coeff ` Q ) ` ( D - 1 ) ) ) ) |
| 358 |
241
|
mullidd |
|- ( ( ph /\ z e. R ) -> ( 1 x. ( ( coeff ` Q ) ` ( D - 1 ) ) ) = ( ( coeff ` Q ) ` ( D - 1 ) ) ) |
| 359 |
357 358
|
eqtrd |
|- ( ( ph /\ z e. R ) -> ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) = ( ( coeff ` Q ) ` ( D - 1 ) ) ) |
| 360 |
355 359
|
oveq12d |
|- ( ( ph /\ z e. R ) -> ( sum_ k e. ( 0 ... 0 ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) + ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` 1 ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - 1 ) ) ) ) = ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) ) |
| 361 |
295 321 360
|
3eqtr3rd |
|- ( ( ph /\ z e. R ) -> ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( ( coeff ` ( Xp oF - ( CC X. { z } ) ) ) ` k ) x. ( ( coeff ` Q ) ` ( ( N - 1 ) - k ) ) ) ) |
| 362 |
255 256 361
|
3eqtr4rd |
|- ( ( ph /\ z e. R ) -> ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) = ( A ` ( N - 1 ) ) ) |
| 363 |
362
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( ( -u z x. ( A ` N ) ) + ( ( coeff ` Q ) ` ( D - 1 ) ) ) / ( A ` N ) ) = ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
| 364 |
237 242 246
|
divcan4d |
|- ( ( ph /\ z e. R ) -> ( ( -u z x. ( A ` N ) ) / ( A ` N ) ) = -u z ) |
| 365 |
364
|
oveq1d |
|- ( ( ph /\ z e. R ) -> ( ( ( -u z x. ( A ` N ) ) / ( A ` N ) ) + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = ( -u z + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) ) |
| 366 |
250 363 365
|
3eqtr3rd |
|- ( ( ph /\ z e. R ) -> ( -u z + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
| 367 |
366
|
negeqd |
|- ( ( ph /\ z e. R ) -> -u ( -u z + ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
| 368 |
248 367
|
eqtr3d |
|- ( ( ph /\ z e. R ) -> ( -u -u z + -u ( ( ( coeff ` Q ) ` ( D - 1 ) ) / ( A ` N ) ) ) = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
| 369 |
128 236 368
|
3eqtrd |
|- ( ( ph /\ z e. R ) -> sum_ x e. R x = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |
| 370 |
28 369
|
exlimddv |
|- ( ph -> sum_ x e. R x = -u ( ( A ` ( N - 1 ) ) / ( A ` N ) ) ) |