| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vieta1.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
| 2 |
|
vieta1.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
| 3 |
|
vieta1.3 |
⊢ 𝑅 = ( ◡ 𝐹 “ { 0 } ) |
| 4 |
|
vieta1.4 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 5 |
|
vieta1.5 |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) = 𝑁 ) |
| 6 |
|
vieta1lem.6 |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
| 7 |
|
vieta1lem.7 |
⊢ ( 𝜑 → ( 𝐷 + 1 ) = 𝑁 ) |
| 8 |
|
vieta1lem.8 |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ) ) |
| 9 |
|
vieta1lem.9 |
⊢ 𝑄 = ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) |
| 10 |
6
|
peano2nnd |
⊢ ( 𝜑 → ( 𝐷 + 1 ) ∈ ℕ ) |
| 11 |
7 10
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 12 |
11
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 13 |
5 12
|
eqnetrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) ≠ 0 ) |
| 14 |
2 12
|
eqnetrrid |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ≠ 0 ) |
| 15 |
|
fveq2 |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = ( deg ‘ 0𝑝 ) ) |
| 16 |
|
dgr0 |
⊢ ( deg ‘ 0𝑝 ) = 0 |
| 17 |
15 16
|
eqtrdi |
⊢ ( 𝐹 = 0𝑝 → ( deg ‘ 𝐹 ) = 0 ) |
| 18 |
17
|
necon3i |
⊢ ( ( deg ‘ 𝐹 ) ≠ 0 → 𝐹 ≠ 0𝑝 ) |
| 19 |
14 18
|
syl |
⊢ ( 𝜑 → 𝐹 ≠ 0𝑝 ) |
| 20 |
3
|
fta1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝐹 ≠ 0𝑝 ) → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) |
| 21 |
4 19 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ∈ Fin ∧ ( ♯ ‘ 𝑅 ) ≤ ( deg ‘ 𝐹 ) ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ Fin ) |
| 23 |
|
hasheq0 |
⊢ ( 𝑅 ∈ Fin → ( ( ♯ ‘ 𝑅 ) = 0 ↔ 𝑅 = ∅ ) ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) = 0 ↔ 𝑅 = ∅ ) ) |
| 25 |
24
|
necon3bid |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑅 ) ≠ 0 ↔ 𝑅 ≠ ∅ ) ) |
| 26 |
13 25
|
mpbid |
⊢ ( 𝜑 → 𝑅 ≠ ∅ ) |
| 27 |
|
n0 |
⊢ ( 𝑅 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝑅 ) |
| 28 |
26 27
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 𝑧 ∈ 𝑅 ) |
| 29 |
|
incom |
⊢ ( { 𝑧 } ∩ ( ◡ 𝑄 “ { 0 } ) ) = ( ( ◡ 𝑄 “ { 0 } ) ∩ { 𝑧 } ) |
| 30 |
1 2 3 4 5 6 7 8 9
|
vieta1lem1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑄 ∈ ( Poly ‘ ℂ ) ∧ 𝐷 = ( deg ‘ 𝑄 ) ) ) |
| 31 |
30
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 = ( deg ‘ 𝑄 ) ) |
| 32 |
30
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑄 ∈ ( Poly ‘ ℂ ) ) |
| 33 |
|
dgrcl |
⊢ ( 𝑄 ∈ ( Poly ‘ ℂ ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝑄 ) ∈ ℕ0 ) |
| 35 |
34
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝑄 ) ∈ ℝ ) |
| 36 |
31 35
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ∈ ℝ ) |
| 37 |
36
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 < ( 𝐷 + 1 ) ) |
| 38 |
36 37
|
gtned |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 + 1 ) ≠ 𝐷 ) |
| 39 |
|
snssi |
⊢ ( 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) → { 𝑧 } ⊆ ( ◡ 𝑄 “ { 0 } ) ) |
| 40 |
|
ssequn1 |
⊢ ( { 𝑧 } ⊆ ( ◡ 𝑄 “ { 0 } ) ↔ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) = ( ◡ 𝑄 “ { 0 } ) ) |
| 41 |
39 40
|
sylib |
⊢ ( 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) → ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) = ( ◡ 𝑄 “ { 0 } ) ) |
| 42 |
41
|
fveq2d |
⊢ ( 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) = ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) |
| 43 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
| 44 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ { 0 } ) ⊆ dom 𝐹 |
| 45 |
3 44
|
eqsstri |
⊢ 𝑅 ⊆ dom 𝐹 |
| 46 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
| 47 |
|
fdm |
⊢ ( 𝐹 : ℂ ⟶ ℂ → dom 𝐹 = ℂ ) |
| 48 |
4 46 47
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = ℂ ) |
| 49 |
45 48
|
sseqtrid |
⊢ ( 𝜑 → 𝑅 ⊆ ℂ ) |
| 50 |
49
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑧 ∈ ℂ ) |
| 51 |
3
|
eleq2i |
⊢ ( 𝑧 ∈ 𝑅 ↔ 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ) |
| 52 |
|
ffn |
⊢ ( 𝐹 : ℂ ⟶ ℂ → 𝐹 Fn ℂ ) |
| 53 |
|
fniniseg |
⊢ ( 𝐹 Fn ℂ → ( 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
| 54 |
4 46 52 53
|
4syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐹 “ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
| 55 |
51 54
|
bitrid |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑅 ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) ) ) |
| 56 |
55
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑧 ) = 0 ) |
| 57 |
|
eqid |
⊢ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = ( Xp ∘f − ( ℂ × { 𝑧 } ) ) |
| 58 |
57
|
facth |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑧 ∈ ℂ ∧ ( 𝐹 ‘ 𝑧 ) = 0 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
| 59 |
43 50 56 58
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
| 60 |
9
|
oveq2i |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · ( 𝐹 quot ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) |
| 61 |
59 60
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 = ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) |
| 62 |
61
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ◡ 𝐹 = ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) |
| 63 |
62
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ◡ 𝐹 “ { 0 } ) = ( ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) “ { 0 } ) ) |
| 64 |
3 63
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑅 = ( ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) “ { 0 } ) ) |
| 65 |
|
cnex |
⊢ ℂ ∈ V |
| 66 |
57
|
plyremlem |
⊢ ( 𝑧 ∈ ℂ → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) = { 𝑧 } ) ) |
| 67 |
50 66
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ∧ ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) = { 𝑧 } ) ) |
| 68 |
67
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ) |
| 69 |
|
plyf |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) : ℂ ⟶ ℂ ) |
| 70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) : ℂ ⟶ ℂ ) |
| 71 |
|
plyf |
⊢ ( 𝑄 ∈ ( Poly ‘ ℂ ) → 𝑄 : ℂ ⟶ ℂ ) |
| 72 |
32 71
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑄 : ℂ ⟶ ℂ ) |
| 73 |
|
ofmulrt |
⊢ ( ( ℂ ∈ V ∧ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) : ℂ ⟶ ℂ ∧ 𝑄 : ℂ ⟶ ℂ ) → ( ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) “ { 0 } ) = ( ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) ∪ ( ◡ 𝑄 “ { 0 } ) ) ) |
| 74 |
65 70 72 73
|
mp3an2i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ◡ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) “ { 0 } ) = ( ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) ∪ ( ◡ 𝑄 “ { 0 } ) ) ) |
| 75 |
67
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) = { 𝑧 } ) |
| 76 |
75
|
uneq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ◡ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) “ { 0 } ) ∪ ( ◡ 𝑄 “ { 0 } ) ) = ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) |
| 77 |
64 74 76
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑅 = ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) |
| 78 |
77
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ 𝑅 ) = ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
| 79 |
5 7
|
eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ 𝑅 ) = ( 𝐷 + 1 ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ 𝑅 ) = ( 𝐷 + 1 ) ) |
| 81 |
78 80
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) = ( 𝐷 + 1 ) ) |
| 82 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐹 ≠ 0𝑝 ) |
| 83 |
61 82
|
eqnetrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ≠ 0𝑝 ) |
| 84 |
|
plymul0or |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ∈ ( Poly ‘ ℂ ) ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = 0𝑝 ↔ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
| 85 |
68 32 84
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) = 0𝑝 ↔ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
| 86 |
85
|
necon3abid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ≠ 0𝑝 ↔ ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) ) |
| 87 |
83 86
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) |
| 88 |
|
neanior |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ∧ 𝑄 ≠ 0𝑝 ) ↔ ¬ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 ∨ 𝑄 = 0𝑝 ) ) |
| 89 |
87 88
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ∧ 𝑄 ≠ 0𝑝 ) ) |
| 90 |
89
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑄 ≠ 0𝑝 ) |
| 91 |
|
eqid |
⊢ ( ◡ 𝑄 “ { 0 } ) = ( ◡ 𝑄 “ { 0 } ) |
| 92 |
91
|
fta1 |
⊢ ( ( 𝑄 ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ≠ 0𝑝 ) → ( ( ◡ 𝑄 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ ( deg ‘ 𝑄 ) ) ) |
| 93 |
32 90 92
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ◡ 𝑄 “ { 0 } ) ∈ Fin ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ ( deg ‘ 𝑄 ) ) ) |
| 94 |
93
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ ( deg ‘ 𝑄 ) ) |
| 95 |
94 31
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ 𝐷 ) |
| 96 |
|
snfi |
⊢ { 𝑧 } ∈ Fin |
| 97 |
93
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ◡ 𝑄 “ { 0 } ) ∈ Fin ) |
| 98 |
|
hashun2 |
⊢ ( ( { 𝑧 } ∈ Fin ∧ ( ◡ 𝑄 “ { 0 } ) ∈ Fin ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) ≤ ( ( ♯ ‘ { 𝑧 } ) + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
| 99 |
96 97 98
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) ≤ ( ( ♯ ‘ { 𝑧 } ) + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
| 100 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 101 |
6
|
nncnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ∈ ℂ ) |
| 103 |
|
addcom |
⊢ ( ( 1 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( 1 + 𝐷 ) = ( 𝐷 + 1 ) ) |
| 104 |
100 102 103
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 + 𝐷 ) = ( 𝐷 + 1 ) ) |
| 105 |
81 104
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) = ( 1 + 𝐷 ) ) |
| 106 |
|
hashsng |
⊢ ( 𝑧 ∈ 𝑅 → ( ♯ ‘ { 𝑧 } ) = 1 ) |
| 107 |
106
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ { 𝑧 } ) = 1 ) |
| 108 |
107
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ♯ ‘ { 𝑧 } ) + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) = ( 1 + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
| 109 |
99 105 108
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 + 𝐷 ) ≤ ( 1 + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) |
| 110 |
|
hashcl |
⊢ ( ( ◡ 𝑄 “ { 0 } ) ∈ Fin → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ∈ ℕ0 ) |
| 111 |
97 110
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ∈ ℕ0 ) |
| 112 |
111
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ∈ ℝ ) |
| 113 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 1 ∈ ℝ ) |
| 114 |
36 112 113
|
leadd2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 ≤ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ↔ ( 1 + 𝐷 ) ≤ ( 1 + ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) ) |
| 115 |
109 114
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ≤ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) |
| 116 |
112 36
|
letri3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = 𝐷 ↔ ( ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ≤ 𝐷 ∧ 𝐷 ≤ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) ) ) |
| 117 |
95 115 116
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = 𝐷 ) |
| 118 |
81 117
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ♯ ‘ ( { 𝑧 } ∪ ( ◡ 𝑄 “ { 0 } ) ) ) = ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ↔ ( 𝐷 + 1 ) = 𝐷 ) ) |
| 119 |
42 118
|
imbitrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) → ( 𝐷 + 1 ) = 𝐷 ) ) |
| 120 |
119
|
necon3ad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝐷 + 1 ) ≠ 𝐷 → ¬ 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) ) ) |
| 121 |
38 120
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ¬ 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) ) |
| 122 |
|
disjsn |
⊢ ( ( ( ◡ 𝑄 “ { 0 } ) ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ ( ◡ 𝑄 “ { 0 } ) ) |
| 123 |
121 122
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ◡ 𝑄 “ { 0 } ) ∩ { 𝑧 } ) = ∅ ) |
| 124 |
29 123
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( { 𝑧 } ∩ ( ◡ 𝑄 “ { 0 } ) ) = ∅ ) |
| 125 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑅 ∈ Fin ) |
| 126 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑅 ⊆ ℂ ) |
| 127 |
126
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑥 ∈ 𝑅 ) → 𝑥 ∈ ℂ ) |
| 128 |
124 77 125 127
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ 𝑅 𝑥 = ( Σ 𝑥 ∈ { 𝑧 } 𝑥 + Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 ) ) |
| 129 |
|
id |
⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) |
| 130 |
129
|
sumsn |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → Σ 𝑥 ∈ { 𝑧 } 𝑥 = 𝑧 ) |
| 131 |
50 50 130
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ { 𝑧 } 𝑥 = 𝑧 ) |
| 132 |
50
|
negnegd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - - 𝑧 = 𝑧 ) |
| 133 |
131 132
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ { 𝑧 } 𝑥 = - - 𝑧 ) |
| 134 |
117 31
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) |
| 135 |
|
fveq2 |
⊢ ( 𝑓 = 𝑄 → ( deg ‘ 𝑓 ) = ( deg ‘ 𝑄 ) ) |
| 136 |
135
|
eqeq2d |
⊢ ( 𝑓 = 𝑄 → ( 𝐷 = ( deg ‘ 𝑓 ) ↔ 𝐷 = ( deg ‘ 𝑄 ) ) ) |
| 137 |
|
cnveq |
⊢ ( 𝑓 = 𝑄 → ◡ 𝑓 = ◡ 𝑄 ) |
| 138 |
137
|
imaeq1d |
⊢ ( 𝑓 = 𝑄 → ( ◡ 𝑓 “ { 0 } ) = ( ◡ 𝑄 “ { 0 } ) ) |
| 139 |
138
|
fveq2d |
⊢ ( 𝑓 = 𝑄 → ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) ) |
| 140 |
139 135
|
eqeq12d |
⊢ ( 𝑓 = 𝑄 → ( ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ↔ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) ) |
| 141 |
136 140
|
anbi12d |
⊢ ( 𝑓 = 𝑄 → ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) ↔ ( 𝐷 = ( deg ‘ 𝑄 ) ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) ) ) |
| 142 |
138
|
sumeq1d |
⊢ ( 𝑓 = 𝑄 → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 ) |
| 143 |
|
fveq2 |
⊢ ( 𝑓 = 𝑄 → ( coeff ‘ 𝑓 ) = ( coeff ‘ 𝑄 ) ) |
| 144 |
135
|
oveq1d |
⊢ ( 𝑓 = 𝑄 → ( ( deg ‘ 𝑓 ) − 1 ) = ( ( deg ‘ 𝑄 ) − 1 ) ) |
| 145 |
143 144
|
fveq12d |
⊢ ( 𝑓 = 𝑄 → ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) ) |
| 146 |
143 135
|
fveq12d |
⊢ ( 𝑓 = 𝑄 → ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
| 147 |
145 146
|
oveq12d |
⊢ ( 𝑓 = 𝑄 → ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) = ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
| 148 |
147
|
negeqd |
⊢ ( 𝑓 = 𝑄 → - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
| 149 |
142 148
|
eqeq12d |
⊢ ( 𝑓 = 𝑄 → ( Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ↔ Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) ) |
| 150 |
141 149
|
imbi12d |
⊢ ( 𝑓 = 𝑄 → ( ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ) ↔ ( ( 𝐷 = ( deg ‘ 𝑄 ) ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) → Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) ) ) |
| 151 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ∀ 𝑓 ∈ ( Poly ‘ ℂ ) ( ( 𝐷 = ( deg ‘ 𝑓 ) ∧ ( ♯ ‘ ( ◡ 𝑓 “ { 0 } ) ) = ( deg ‘ 𝑓 ) ) → Σ 𝑥 ∈ ( ◡ 𝑓 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑓 ) ‘ ( ( deg ‘ 𝑓 ) − 1 ) ) / ( ( coeff ‘ 𝑓 ) ‘ ( deg ‘ 𝑓 ) ) ) ) ) |
| 152 |
150 151 32
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝐷 = ( deg ‘ 𝑄 ) ∧ ( ♯ ‘ ( ◡ 𝑄 “ { 0 } ) ) = ( deg ‘ 𝑄 ) ) → Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) ) |
| 153 |
31 134 152
|
mp2and |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
| 154 |
31
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) ) |
| 155 |
61
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ 𝐹 ) = ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ) |
| 156 |
1 155
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐴 = ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ) |
| 157 |
61
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝐹 ) = ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ) |
| 158 |
67
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 1 ) |
| 159 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 160 |
159
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 1 ≠ 0 ) |
| 161 |
158 160
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ≠ 0 ) |
| 162 |
|
fveq2 |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( deg ‘ 0𝑝 ) ) |
| 163 |
162 16
|
eqtrdi |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) = 0𝑝 → ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = 0 ) |
| 164 |
163
|
necon3i |
⊢ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ≠ 0 → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) |
| 165 |
161 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) |
| 166 |
|
eqid |
⊢ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) |
| 167 |
|
eqid |
⊢ ( deg ‘ 𝑄 ) = ( deg ‘ 𝑄 ) |
| 168 |
166 167
|
dgrmul |
⊢ ( ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ≠ 0𝑝 ) ∧ ( 𝑄 ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ≠ 0𝑝 ) ) → ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
| 169 |
68 165 32 90 168
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
| 170 |
157 169
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( deg ‘ 𝐹 ) = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
| 171 |
2 170
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝑁 = ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) |
| 172 |
156 171
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ 𝑁 ) = ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) ) |
| 173 |
|
eqid |
⊢ ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) |
| 174 |
|
eqid |
⊢ ( coeff ‘ 𝑄 ) = ( coeff ‘ 𝑄 ) |
| 175 |
173 174 166 167
|
coemulhi |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ∈ ( Poly ‘ ℂ ) ) → ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
| 176 |
68 32 175
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) + ( deg ‘ 𝑄 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
| 177 |
158
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) = ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) ) |
| 178 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 179 |
|
plyid |
⊢ ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ) → Xp ∈ ( Poly ‘ ℂ ) ) |
| 180 |
178 100 179
|
mp2an |
⊢ Xp ∈ ( Poly ‘ ℂ ) |
| 181 |
|
plyconst |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝑧 ∈ ℂ ) → ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ) |
| 182 |
178 50 181
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ) |
| 183 |
|
eqid |
⊢ ( coeff ‘ Xp ) = ( coeff ‘ Xp ) |
| 184 |
|
eqid |
⊢ ( coeff ‘ ( ℂ × { 𝑧 } ) ) = ( coeff ‘ ( ℂ × { 𝑧 } ) ) |
| 185 |
183 184
|
coesub |
⊢ ( ( Xp ∈ ( Poly ‘ ℂ ) ∧ ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ) → ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ) |
| 186 |
180 182 185
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) = ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ) |
| 187 |
186
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) ) |
| 188 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 189 |
183
|
coef3 |
⊢ ( Xp ∈ ( Poly ‘ ℂ ) → ( coeff ‘ Xp ) : ℕ0 ⟶ ℂ ) |
| 190 |
|
ffn |
⊢ ( ( coeff ‘ Xp ) : ℕ0 ⟶ ℂ → ( coeff ‘ Xp ) Fn ℕ0 ) |
| 191 |
180 189 190
|
mp2b |
⊢ ( coeff ‘ Xp ) Fn ℕ0 |
| 192 |
191
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ Xp ) Fn ℕ0 ) |
| 193 |
184
|
coef3 |
⊢ ( ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) → ( coeff ‘ ( ℂ × { 𝑧 } ) ) : ℕ0 ⟶ ℂ ) |
| 194 |
|
ffn |
⊢ ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) : ℕ0 ⟶ ℂ → ( coeff ‘ ( ℂ × { 𝑧 } ) ) Fn ℕ0 ) |
| 195 |
182 193 194
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ ( ℂ × { 𝑧 } ) ) Fn ℕ0 ) |
| 196 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 197 |
196
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ℕ0 ∈ V ) |
| 198 |
|
inidm |
⊢ ( ℕ0 ∩ ℕ0 ) = ℕ0 |
| 199 |
|
coeidp |
⊢ ( 1 ∈ ℕ0 → ( ( coeff ‘ Xp ) ‘ 1 ) = if ( 1 = 1 , 1 , 0 ) ) |
| 200 |
199
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( coeff ‘ Xp ) ‘ 1 ) = if ( 1 = 1 , 1 , 0 ) ) |
| 201 |
|
eqid |
⊢ 1 = 1 |
| 202 |
201
|
iftruei |
⊢ if ( 1 = 1 , 1 , 0 ) = 1 |
| 203 |
200 202
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( coeff ‘ Xp ) ‘ 1 ) = 1 ) |
| 204 |
|
0lt1 |
⊢ 0 < 1 |
| 205 |
|
0re |
⊢ 0 ∈ ℝ |
| 206 |
|
1re |
⊢ 1 ∈ ℝ |
| 207 |
205 206
|
ltnlei |
⊢ ( 0 < 1 ↔ ¬ 1 ≤ 0 ) |
| 208 |
204 207
|
mpbi |
⊢ ¬ 1 ≤ 0 |
| 209 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → 𝑧 ∈ ℂ ) |
| 210 |
|
0dgr |
⊢ ( 𝑧 ∈ ℂ → ( deg ‘ ( ℂ × { 𝑧 } ) ) = 0 ) |
| 211 |
209 210
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( deg ‘ ( ℂ × { 𝑧 } ) ) = 0 ) |
| 212 |
211
|
breq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ↔ 1 ≤ 0 ) ) |
| 213 |
208 212
|
mtbiri |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ¬ 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ) |
| 214 |
|
eqid |
⊢ ( deg ‘ ( ℂ × { 𝑧 } ) ) = ( deg ‘ ( ℂ × { 𝑧 } ) ) |
| 215 |
184 214
|
dgrub |
⊢ ( ( ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ∧ 1 ∈ ℕ0 ∧ ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) ≠ 0 ) → 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ) |
| 216 |
215
|
3expia |
⊢ ( ( ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) ∧ 1 ∈ ℕ0 ) → ( ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) ≠ 0 → 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ) ) |
| 217 |
182 216
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) ≠ 0 → 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) ) ) |
| 218 |
217
|
necon1bd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ¬ 1 ≤ ( deg ‘ ( ℂ × { 𝑧 } ) ) → ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) = 0 ) ) |
| 219 |
213 218
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 1 ) = 0 ) |
| 220 |
192 195 197 197 198 203 219
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 1 ∈ ℕ0 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = ( 1 − 0 ) ) |
| 221 |
188 220
|
mpan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = ( 1 − 0 ) ) |
| 222 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 223 |
221 222
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = 1 ) |
| 224 |
187 223
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) = 1 ) |
| 225 |
177 224
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) = 1 ) |
| 226 |
225
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) = ( 1 · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
| 227 |
174
|
coef3 |
⊢ ( 𝑄 ∈ ( Poly ‘ ℂ ) → ( coeff ‘ 𝑄 ) : ℕ0 ⟶ ℂ ) |
| 228 |
32 227
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ 𝑄 ) : ℕ0 ⟶ ℂ ) |
| 229 |
228 34
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ∈ ℂ ) |
| 230 |
229
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
| 231 |
226 230
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) · ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
| 232 |
172 176 231
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ 𝑁 ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
| 233 |
154 232
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) = ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
| 234 |
233
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) = - ( ( ( coeff ‘ 𝑄 ) ‘ ( ( deg ‘ 𝑄 ) − 1 ) ) / ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) ) |
| 235 |
153 234
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 = - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
| 236 |
133 235
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Σ 𝑥 ∈ { 𝑧 } 𝑥 + Σ 𝑥 ∈ ( ◡ 𝑄 “ { 0 } ) 𝑥 ) = ( - - 𝑧 + - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) ) |
| 237 |
50
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - 𝑧 ∈ ℂ ) |
| 238 |
|
nnm1nn0 |
⊢ ( 𝐷 ∈ ℕ → ( 𝐷 − 1 ) ∈ ℕ0 ) |
| 239 |
6 238
|
syl |
⊢ ( 𝜑 → ( 𝐷 − 1 ) ∈ ℕ0 ) |
| 240 |
239
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 − 1 ) ∈ ℕ0 ) |
| 241 |
228 240
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ∈ ℂ ) |
| 242 |
232 229
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ 𝑁 ) ∈ ℂ ) |
| 243 |
2 1
|
dgreq0 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑁 ) = 0 ) ) |
| 244 |
43 243
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐹 = 0𝑝 ↔ ( 𝐴 ‘ 𝑁 ) = 0 ) ) |
| 245 |
244
|
necon3bid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐹 ≠ 0𝑝 ↔ ( 𝐴 ‘ 𝑁 ) ≠ 0 ) ) |
| 246 |
82 245
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ 𝑁 ) ≠ 0 ) |
| 247 |
241 242 246
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ∈ ℂ ) |
| 248 |
237 247
|
negdid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - ( - 𝑧 + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = ( - - 𝑧 + - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) ) |
| 249 |
237 242
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) ∈ ℂ ) |
| 250 |
249 241 242 246
|
divdird |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) / ( 𝐴 ‘ 𝑁 ) ) = ( ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) / ( 𝐴 ‘ 𝑁 ) ) + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) ) |
| 251 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 252 |
11 251
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 253 |
252
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 254 |
173 174
|
coemul |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑄 ∈ ( Poly ‘ ℂ ) ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( 𝑁 − 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
| 255 |
68 32 253 254
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( 𝑁 − 1 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
| 256 |
156
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐴 ‘ ( 𝑁 − 1 ) ) = ( ( coeff ‘ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∘f · 𝑄 ) ) ‘ ( 𝑁 − 1 ) ) ) |
| 257 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
| 258 |
257
|
oveq2i |
⊢ ( 0 ... 1 ) = ( 0 ... ( 0 + 1 ) ) |
| 259 |
258
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 0 ... 1 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) |
| 260 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 261 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 262 |
260 261
|
eleqtri |
⊢ 0 ∈ ( ℤ≥ ‘ 0 ) |
| 263 |
262
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 0 ∈ ( ℤ≥ ‘ 0 ) ) |
| 264 |
258
|
eleq2i |
⊢ ( 𝑘 ∈ ( 0 ... 1 ) ↔ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ) |
| 265 |
173
|
coef3 |
⊢ ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) → ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) : ℕ0 ⟶ ℂ ) |
| 266 |
68 265
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) : ℕ0 ⟶ ℂ ) |
| 267 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 1 ) → 𝑘 ∈ ℕ0 ) |
| 268 |
|
ffvelcdm |
⊢ ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 269 |
266 267 268
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ∈ ℂ ) |
| 270 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐷 + 1 ) − 1 ) = ( 𝑁 − 1 ) ) |
| 271 |
|
pncan |
⊢ ( ( 𝐷 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝐷 + 1 ) − 1 ) = 𝐷 ) |
| 272 |
101 100 271
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐷 + 1 ) − 1 ) = 𝐷 ) |
| 273 |
270 272
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑁 − 1 ) = 𝐷 ) |
| 274 |
273
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑁 − 1 ) = 𝐷 ) |
| 275 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → 𝐷 ∈ ℕ ) |
| 276 |
274 275
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
| 277 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 278 |
276 277
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 279 |
|
fzss2 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( 0 ... 1 ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 280 |
278 279
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 0 ... 1 ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 281 |
280
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... 1 ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 282 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) − 𝑘 ) ∈ ℕ0 ) |
| 283 |
|
ffvelcdm |
⊢ ( ( ( coeff ‘ 𝑄 ) : ℕ0 ⟶ ℂ ∧ ( ( 𝑁 − 1 ) − 𝑘 ) ∈ ℕ0 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ∈ ℂ ) |
| 284 |
228 282 283
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ∈ ℂ ) |
| 285 |
281 284
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ∈ ℂ ) |
| 286 |
269 285
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ∈ ℂ ) |
| 287 |
264 286
|
sylan2br |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ∈ ℂ ) |
| 288 |
|
id |
⊢ ( 𝑘 = ( 0 + 1 ) → 𝑘 = ( 0 + 1 ) ) |
| 289 |
288 257
|
eqtr4di |
⊢ ( 𝑘 = ( 0 + 1 ) → 𝑘 = 1 ) |
| 290 |
289
|
fveq2d |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) = ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) ) |
| 291 |
289
|
oveq2d |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( 𝑁 − 1 ) − 𝑘 ) = ( ( 𝑁 − 1 ) − 1 ) ) |
| 292 |
291
|
fveq2d |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
| 293 |
290 292
|
oveq12d |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) ) |
| 294 |
263 287 293
|
fsump1 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) + ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) ) ) |
| 295 |
259 294
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) + ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) ) ) |
| 296 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) → ¬ 𝑘 ∈ ( 0 ... 1 ) ) |
| 297 |
296
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ¬ 𝑘 ∈ ( 0 ... 1 ) ) |
| 298 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) → 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 299 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 300 |
298 299
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 301 |
173 166
|
dgrub |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑘 ∈ ℕ0 ∧ ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) |
| 302 |
301
|
3expia |
⊢ ( ( ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ∈ ( Poly ‘ ℂ ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
| 303 |
68 300 302
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
| 304 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
| 305 |
298 304
|
syl |
⊢ ( 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
| 306 |
305
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ 0 ) ) |
| 307 |
|
1z |
⊢ 1 ∈ ℤ |
| 308 |
|
elfz5 |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 0 ) ∧ 1 ∈ ℤ ) → ( 𝑘 ∈ ( 0 ... 1 ) ↔ 𝑘 ≤ 1 ) ) |
| 309 |
306 307 308
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( 𝑘 ∈ ( 0 ... 1 ) ↔ 𝑘 ≤ 1 ) ) |
| 310 |
158
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ↔ 𝑘 ≤ 1 ) ) |
| 311 |
310
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ↔ 𝑘 ≤ 1 ) ) |
| 312 |
309 311
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( 𝑘 ∈ ( 0 ... 1 ) ↔ 𝑘 ≤ ( deg ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ) ) |
| 313 |
303 312
|
sylibrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) ≠ 0 → 𝑘 ∈ ( 0 ... 1 ) ) ) |
| 314 |
313
|
necon1bd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ¬ 𝑘 ∈ ( 0 ... 1 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) = 0 ) ) |
| 315 |
297 314
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) = 0 ) |
| 316 |
315
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( 0 · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
| 317 |
298 284
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ∈ ℂ ) |
| 318 |
317
|
mul02d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( 0 · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = 0 ) |
| 319 |
316 318
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 𝑘 ∈ ( ( 0 ... ( 𝑁 − 1 ) ) ∖ ( 0 ... 1 ) ) ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = 0 ) |
| 320 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
| 321 |
280 286 319 320
|
fsumss |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
| 322 |
|
0z |
⊢ 0 ∈ ℤ |
| 323 |
186
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) ) |
| 324 |
|
coeidp |
⊢ ( 0 ∈ ℕ0 → ( ( coeff ‘ Xp ) ‘ 0 ) = if ( 0 = 1 , 1 , 0 ) ) |
| 325 |
159
|
nesymi |
⊢ ¬ 0 = 1 |
| 326 |
325
|
iffalsei |
⊢ if ( 0 = 1 , 1 , 0 ) = 0 |
| 327 |
324 326
|
eqtrdi |
⊢ ( 0 ∈ ℕ0 → ( ( coeff ‘ Xp ) ‘ 0 ) = 0 ) |
| 328 |
327
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( ( coeff ‘ Xp ) ‘ 0 ) = 0 ) |
| 329 |
184
|
coefv0 |
⊢ ( ( ℂ × { 𝑧 } ) ∈ ( Poly ‘ ℂ ) → ( ( ℂ × { 𝑧 } ) ‘ 0 ) = ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 0 ) ) |
| 330 |
182 329
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ℂ × { 𝑧 } ) ‘ 0 ) = ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 0 ) ) |
| 331 |
|
0cn |
⊢ 0 ∈ ℂ |
| 332 |
|
vex |
⊢ 𝑧 ∈ V |
| 333 |
332
|
fvconst2 |
⊢ ( 0 ∈ ℂ → ( ( ℂ × { 𝑧 } ) ‘ 0 ) = 𝑧 ) |
| 334 |
331 333
|
ax-mp |
⊢ ( ( ℂ × { 𝑧 } ) ‘ 0 ) = 𝑧 |
| 335 |
330 334
|
eqtr3di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 0 ) = 𝑧 ) |
| 336 |
335
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( ( coeff ‘ ( ℂ × { 𝑧 } ) ) ‘ 0 ) = 𝑧 ) |
| 337 |
192 195 197 197 198 328 336
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) ∧ 0 ∈ ℕ0 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = ( 0 − 𝑧 ) ) |
| 338 |
260 337
|
mpan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = ( 0 − 𝑧 ) ) |
| 339 |
|
df-neg |
⊢ - 𝑧 = ( 0 − 𝑧 ) |
| 340 |
338 339
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ Xp ) ∘f − ( coeff ‘ ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = - 𝑧 ) |
| 341 |
323 340
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) = - 𝑧 ) |
| 342 |
274
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝑁 − 1 ) − 0 ) = ( 𝐷 − 0 ) ) |
| 343 |
102
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 𝐷 − 0 ) = 𝐷 ) |
| 344 |
342 343 31
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( 𝑁 − 1 ) − 0 ) = ( deg ‘ 𝑄 ) ) |
| 345 |
344
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( deg ‘ 𝑄 ) ) ) |
| 346 |
345 232
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) = ( 𝐴 ‘ 𝑁 ) ) |
| 347 |
341 346
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) = ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) ) |
| 348 |
347 249
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ∈ ℂ ) |
| 349 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) = ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) ) |
| 350 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝑁 − 1 ) − 𝑘 ) = ( ( 𝑁 − 1 ) − 0 ) ) |
| 351 |
350
|
fveq2d |
⊢ ( 𝑘 = 0 → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) |
| 352 |
349 351
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ) |
| 353 |
352
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ) |
| 354 |
322 348 353
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 0 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 0 ) ) ) ) |
| 355 |
354 347
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) = ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) ) |
| 356 |
274
|
fvoveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) |
| 357 |
224 356
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) = ( 1 · ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) ) |
| 358 |
241
|
mullidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( 1 · ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) |
| 359 |
357 358
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) = ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) |
| 360 |
355 359
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( Σ 𝑘 ∈ ( 0 ... 0 ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) + ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 1 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) ) = ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) ) |
| 361 |
295 321 360
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( coeff ‘ ( Xp ∘f − ( ℂ × { 𝑧 } ) ) ) ‘ 𝑘 ) · ( ( coeff ‘ 𝑄 ) ‘ ( ( 𝑁 − 1 ) − 𝑘 ) ) ) ) |
| 362 |
255 256 361
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) = ( 𝐴 ‘ ( 𝑁 − 1 ) ) ) |
| 363 |
362
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) + ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) ) / ( 𝐴 ‘ 𝑁 ) ) = ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
| 364 |
237 242 246
|
divcan4d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) / ( 𝐴 ‘ 𝑁 ) ) = - 𝑧 ) |
| 365 |
364
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( ( ( - 𝑧 · ( 𝐴 ‘ 𝑁 ) ) / ( 𝐴 ‘ 𝑁 ) ) + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = ( - 𝑧 + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) ) |
| 366 |
250 363 365
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( - 𝑧 + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
| 367 |
366
|
negeqd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → - ( - 𝑧 + ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = - ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
| 368 |
248 367
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → ( - - 𝑧 + - ( ( ( coeff ‘ 𝑄 ) ‘ ( 𝐷 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) = - ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
| 369 |
128 236 368
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑅 ) → Σ 𝑥 ∈ 𝑅 𝑥 = - ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |
| 370 |
28 369
|
exlimddv |
⊢ ( 𝜑 → Σ 𝑥 ∈ 𝑅 𝑥 = - ( ( 𝐴 ‘ ( 𝑁 − 1 ) ) / ( 𝐴 ‘ 𝑁 ) ) ) |