Metamath Proof Explorer


Theorem bcs3

Description: Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL . (Contributed by NM, 26-May-2006) (New usage is discouraged.)

Ref Expression
Assertion bcs3 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( norm𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( norm𝐴 ) )

Proof

Step Hyp Ref Expression
1 abshicom ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) )
2 1 3adant3 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( norm𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) )
3 bcs2 ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ ( norm𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ≤ ( norm𝐴 ) )
4 3 3com12 ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( norm𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ≤ ( norm𝐴 ) )
5 2 4 eqbrtrd ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( norm𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( norm𝐴 ) )