Description: Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL . (Contributed by NM, 26-May-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bcs3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( normℎ ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abshicom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ) | |
2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) = ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ) |
3 | bcs2 | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ ( normℎ ‘ 𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ) | |
4 | 3 | 3com12 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐵 ·ih 𝐴 ) ) ≤ ( normℎ ‘ 𝐴 ) ) |
5 | 2 4 | eqbrtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ( normℎ ‘ 𝐵 ) ≤ 1 ) → ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( normℎ ‘ 𝐴 ) ) |