| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) |
| 2 |
1
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
| 3 |
2
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 4 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℝ ) |
| 5 |
4
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℂ ) |
| 6 |
5
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐷 ↑ 2 ) ∈ ℂ ) |
| 7 |
3 6
|
addcomd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) = ( ( 𝐷 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) ) |
| 8 |
7
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐷 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) ) ) |
| 9 |
|
bhmafibid1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐷 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐷 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) |
| 10 |
9
|
ancom2s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐷 ↑ 2 ) + ( 𝐶 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℂ ) |
| 13 |
12 5
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℂ ) |
| 16 |
15 2
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 17 |
13 16
|
subcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ∈ ℂ ) |
| 18 |
17
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) ∈ ℂ ) |
| 19 |
12 2
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 20 |
15 5
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 · 𝐷 ) ∈ ℂ ) |
| 21 |
19 20
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ∈ ℂ ) |
| 22 |
21
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) ∈ ℂ ) |
| 23 |
18 22
|
addcomd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) ) = ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 24 |
8 10 23
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐶 ) + ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) − ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |