| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℝ ) |
| 2 |
1
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐴 ∈ ℂ ) |
| 3 |
|
ax-icn |
⊢ i ∈ ℂ |
| 4 |
3
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → i ∈ ℂ ) |
| 5 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐵 ∈ ℂ ) |
| 7 |
4 6
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( i · 𝐵 ) ∈ ℂ ) |
| 8 |
2 7
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℝ ) |
| 10 |
9
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐶 ∈ ℂ ) |
| 11 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → 𝐷 ∈ ℂ ) |
| 13 |
4 12
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( i · 𝐷 ) ∈ ℂ ) |
| 14 |
10 13
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐶 + ( i · 𝐷 ) ) ∈ ℂ ) |
| 15 |
8 14
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ∈ ℂ ) |
| 16 |
15
|
replimd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) = ( ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) + ( i · ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ) ) ) |
| 17 |
8 14
|
remuld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) − ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) ) |
| 18 |
1 5
|
crred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐴 ) |
| 19 |
9 11
|
crred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) = 𝐶 ) |
| 20 |
18 19
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( 𝐴 · 𝐶 ) ) |
| 21 |
1 5
|
crimd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐵 ) |
| 22 |
9 11
|
crimd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) = 𝐷 ) |
| 23 |
21 22
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( 𝐵 · 𝐷 ) ) |
| 24 |
20 23
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) − ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ) |
| 25 |
17 24
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ) |
| 26 |
8 14
|
immuld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) ) |
| 27 |
18 22
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( 𝐴 · 𝐷 ) ) |
| 28 |
21 19
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( 𝐵 · 𝐶 ) ) |
| 29 |
27 28
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℑ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( ℜ ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) |
| 30 |
26 29
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) |
| 31 |
30
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( i · ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ) = ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) |
| 32 |
25 31
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ℜ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) + ( i · ( ℑ ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) |
| 33 |
16 32
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) = ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( abs ‘ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) ) |
| 35 |
34
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) = ( ( abs ‘ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) ↑ 2 ) ) |
| 36 |
8 14
|
absmuld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) = ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ) |
| 37 |
36
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) ) |
| 38 |
8
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ∈ ℂ ) |
| 40 |
14
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ∈ ℝ ) |
| 41 |
40
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ∈ ℂ ) |
| 42 |
39 41
|
sqmuld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) · ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) = ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) · ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) ) |
| 43 |
|
absreimsq |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 44 |
|
absreimsq |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 45 |
43 44
|
oveqan12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) · ( ( abs ‘ ( 𝐶 + ( i · 𝐷 ) ) ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 46 |
37 42 45
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( abs ‘ ( ( 𝐴 + ( i · 𝐵 ) ) · ( 𝐶 + ( i · 𝐷 ) ) ) ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 47 |
1 9
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 48 |
5 11
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 · 𝐷 ) ∈ ℝ ) |
| 49 |
47 48
|
resubcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ∈ ℝ ) |
| 50 |
1 11
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐴 · 𝐷 ) ∈ ℝ ) |
| 51 |
5 9
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 52 |
50 51
|
readdcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ∈ ℝ ) |
| 53 |
|
absreimsq |
⊢ ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ∈ ℝ ∧ ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ∈ ℝ ) → ( ( abs ‘ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) ↑ 2 ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 54 |
49 52 53
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( abs ‘ ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) + ( i · ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ) ) ) ↑ 2 ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |
| 55 |
35 46 54
|
3eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) · ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐷 ) ) ↑ 2 ) + ( ( ( 𝐴 · 𝐷 ) + ( 𝐵 · 𝐶 ) ) ↑ 2 ) ) ) |