| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
|
| 2 |
1
|
recnd |
|
| 3 |
|
ax-icn |
|
| 4 |
3
|
a1i |
|
| 5 |
|
simplr |
|
| 6 |
5
|
recnd |
|
| 7 |
4 6
|
mulcld |
|
| 8 |
2 7
|
addcld |
|
| 9 |
|
simprl |
|
| 10 |
9
|
recnd |
|
| 11 |
|
simprr |
|
| 12 |
11
|
recnd |
|
| 13 |
4 12
|
mulcld |
|
| 14 |
10 13
|
addcld |
|
| 15 |
8 14
|
mulcld |
|
| 16 |
15
|
replimd |
|
| 17 |
8 14
|
remuld |
|
| 18 |
1 5
|
crred |
|
| 19 |
9 11
|
crred |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
1 5
|
crimd |
|
| 22 |
9 11
|
crimd |
|
| 23 |
21 22
|
oveq12d |
|
| 24 |
20 23
|
oveq12d |
|
| 25 |
17 24
|
eqtrd |
|
| 26 |
8 14
|
immuld |
|
| 27 |
18 22
|
oveq12d |
|
| 28 |
21 19
|
oveq12d |
|
| 29 |
27 28
|
oveq12d |
|
| 30 |
26 29
|
eqtrd |
|
| 31 |
30
|
oveq2d |
|
| 32 |
25 31
|
oveq12d |
|
| 33 |
16 32
|
eqtrd |
|
| 34 |
33
|
fveq2d |
|
| 35 |
34
|
oveq1d |
|
| 36 |
8 14
|
absmuld |
|
| 37 |
36
|
oveq1d |
|
| 38 |
8
|
abscld |
|
| 39 |
38
|
recnd |
|
| 40 |
14
|
abscld |
|
| 41 |
40
|
recnd |
|
| 42 |
39 41
|
sqmuld |
|
| 43 |
|
absreimsq |
|
| 44 |
|
absreimsq |
|
| 45 |
43 44
|
oveqan12d |
|
| 46 |
37 42 45
|
3eqtrd |
|
| 47 |
1 9
|
remulcld |
|
| 48 |
5 11
|
remulcld |
|
| 49 |
47 48
|
resubcld |
|
| 50 |
1 11
|
remulcld |
|
| 51 |
5 9
|
remulcld |
|
| 52 |
50 51
|
readdcld |
|
| 53 |
|
absreimsq |
|
| 54 |
49 52 53
|
syl2anc |
|
| 55 |
35 46 54
|
3eqtr3d |
|