Metamath Proof Explorer


Theorem bj-0nel1

Description: The empty set does not belong to { 1o } . (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-0nel1 ∅ ∉ { 1o }

Proof

Step Hyp Ref Expression
1 1n0 1o ≠ ∅
2 1 nesymi ¬ ∅ = 1o
3 0ex ∅ ∈ V
4 3 elsn ( ∅ ∈ { 1o } ↔ ∅ = 1o )
5 2 4 mtbir ¬ ∅ ∈ { 1o }
6 5 nelir ∅ ∉ { 1o }