| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfclel | ⊢ ( 𝐴  ∈  { 𝑥  ∣  𝜑 }  ↔  ∃ 𝑧 ( 𝑧  =  𝐴  ∧  𝑧  ∈  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ∀ 𝑥 𝜑  →  ( 𝐴  ∈  { 𝑥  ∣  𝜑 }  ↔  ∃ 𝑧 ( 𝑧  =  𝐴  ∧  𝑧  ∈  { 𝑥  ∣  𝜑 } ) ) ) | 
						
							| 3 |  | vexwt | ⊢ ( ∀ 𝑥 𝜑  →  𝑧  ∈  { 𝑥  ∣  𝜑 } ) | 
						
							| 4 | 3 | biantrud | ⊢ ( ∀ 𝑥 𝜑  →  ( 𝑧  =  𝐴  ↔  ( 𝑧  =  𝐴  ∧  𝑧  ∈  { 𝑥  ∣  𝜑 } ) ) ) | 
						
							| 5 | 4 | bicomd | ⊢ ( ∀ 𝑥 𝜑  →  ( ( 𝑧  =  𝐴  ∧  𝑧  ∈  { 𝑥  ∣  𝜑 } )  ↔  𝑧  =  𝐴 ) ) | 
						
							| 6 | 5 | exbidv | ⊢ ( ∀ 𝑥 𝜑  →  ( ∃ 𝑧 ( 𝑧  =  𝐴  ∧  𝑧  ∈  { 𝑥  ∣  𝜑 } )  ↔  ∃ 𝑧 𝑧  =  𝐴 ) ) | 
						
							| 7 |  | iseqsetv-clel | ⊢ ( ∃ 𝑧 𝑧  =  𝐴  ↔  ∃ 𝑦 𝑦  =  𝐴 ) | 
						
							| 8 | 7 | a1i | ⊢ ( ∀ 𝑥 𝜑  →  ( ∃ 𝑧 𝑧  =  𝐴  ↔  ∃ 𝑦 𝑦  =  𝐴 ) ) | 
						
							| 9 | 2 6 8 | 3bitrd | ⊢ ( ∀ 𝑥 𝜑  →  ( 𝐴  ∈  { 𝑥  ∣  𝜑 }  ↔  ∃ 𝑦 𝑦  =  𝐴 ) ) |