Metamath Proof Explorer


Theorem bj-issetwt

Description: Closed form of bj-issetw . (Contributed by BJ, 29-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-issetwt
|- ( A. x ph -> ( A e. { x | ph } <-> E. y y = A ) )

Proof

Step Hyp Ref Expression
1 dfclel
 |-  ( A e. { x | ph } <-> E. z ( z = A /\ z e. { x | ph } ) )
2 1 a1i
 |-  ( A. x ph -> ( A e. { x | ph } <-> E. z ( z = A /\ z e. { x | ph } ) ) )
3 vexwt
 |-  ( A. x ph -> z e. { x | ph } )
4 3 biantrud
 |-  ( A. x ph -> ( z = A <-> ( z = A /\ z e. { x | ph } ) ) )
5 4 bicomd
 |-  ( A. x ph -> ( ( z = A /\ z e. { x | ph } ) <-> z = A ) )
6 5 exbidv
 |-  ( A. x ph -> ( E. z ( z = A /\ z e. { x | ph } ) <-> E. z z = A ) )
7 bj-denotes
 |-  ( E. z z = A <-> E. y y = A )
8 7 a1i
 |-  ( A. x ph -> ( E. z z = A <-> E. y y = A ) )
9 2 6 8 3bitrd
 |-  ( A. x ph -> ( A e. { x | ph } <-> E. y y = A ) )