Metamath Proof Explorer


Theorem bj-issetwt

Description: Closed form of bj-issetw . (Contributed by BJ, 29-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-issetwt xφAx|φyy=A

Proof

Step Hyp Ref Expression
1 dfclel Ax|φzz=Azx|φ
2 1 a1i xφAx|φzz=Azx|φ
3 vexwt xφzx|φ
4 3 biantrud xφz=Az=Azx|φ
5 4 bicomd xφz=Azx|φz=A
6 5 exbidv xφzz=Azx|φzz=A
7 bj-denotes zz=Ayy=A
8 7 a1i xφzz=Ayy=A
9 2 6 8 3bitrd xφAx|φyy=A