Metamath Proof Explorer


Theorem bj-issetwt

Description: Closed form of bj-issetw . (Contributed by BJ, 29-Apr-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-issetwt x φ A x | φ y y = A

Proof

Step Hyp Ref Expression
1 dfclel A x | φ z z = A z x | φ
2 1 a1i x φ A x | φ z z = A z x | φ
3 vexwt x φ z x | φ
4 3 biantrud x φ z = A z = A z x | φ
5 4 bicomd x φ z = A z x | φ z = A
6 5 exbidv x φ z z = A z x | φ z z = A
7 bj-denotes z z = A y y = A
8 7 a1i x φ z z = A y y = A
9 2 6 8 3bitrd x φ A x | φ y y = A