Metamath Proof Explorer


Theorem bj-minftynrr

Description: The extended complex number minfty is not a complex number. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-minftynrr ¬ -∞ ∈ ℂ

Proof

Step Hyp Ref Expression
1 df-bj-minfty -∞ = ( +∞ei ‘ π )
2 bj-inftyexpidisj ¬ ( +∞ei ‘ π ) ∈ ℂ
3 1 2 eqneltri ¬ -∞ ∈ ℂ