Metamath Proof Explorer


Theorem bj-minftynrr

Description: The extended complex number minfty is not a complex number. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-minftynrr ¬ -∞

Proof

Step Hyp Ref Expression
1 df-bj-minfty -∞ = inftyexpi π
2 bj-inftyexpidisj ¬ inftyexpi π
3 1 2 eqneltri ¬ -∞