Metamath Proof Explorer


Theorem bj-pinftynminfty

Description: The extended complex numbers pinfty and minfty are different. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-pinftynminfty +∞-∞

Proof

Step Hyp Ref Expression
1 pire π
2 pipos 0<π
3 1 2 gt0ne0ii π0
4 3 nesymi ¬0=π
5 1 renegcli π
6 5 rexri π*
7 0red π*π0
8 lt0neg2 π0<ππ<0
9 1 8 ax-mp 0<ππ<0
10 2 9 mpbi π<0
11 10 a1i π*ππ<0
12 0re 0
13 12 1 2 ltleii 0π
14 13 a1i π*π0π
15 elioc2 π*π0ππ0π<00π
16 7 11 14 15 mpbir3and π*π0ππ
17 6 1 16 mp2an 0ππ
18 simpr π*ππ
19 5 12 1 lttri π<00<ππ<π
20 10 2 19 mp2an π<π
21 20 a1i π*ππ<π
22 1 leidi ππ
23 22 a1i π*πππ
24 elioc2 π*ππππππ<πππ
25 18 21 23 24 mpbir3and π*ππππ
26 6 1 25 mp2an πππ
27 bj-inftyexpiinj 0πππππ0=πinftyexpi0=inftyexpiπ
28 17 26 27 mp2an 0=πinftyexpi0=inftyexpiπ
29 4 28 mtbi ¬inftyexpi0=inftyexpiπ
30 df-bj-minfty -∞=inftyexpiπ
31 30 eqeq2i inftyexpi0=-∞inftyexpi0=inftyexpiπ
32 29 31 mtbir ¬inftyexpi0=-∞
33 df-bj-pinfty +∞=inftyexpi0
34 33 eqeq1i +∞=-∞inftyexpi0=-∞
35 32 34 mtbir ¬+∞=-∞
36 35 neir +∞-∞