| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pire |
|- _pi e. RR |
| 2 |
|
pipos |
|- 0 < _pi |
| 3 |
1 2
|
gt0ne0ii |
|- _pi =/= 0 |
| 4 |
3
|
nesymi |
|- -. 0 = _pi |
| 5 |
1
|
renegcli |
|- -u _pi e. RR |
| 6 |
5
|
rexri |
|- -u _pi e. RR* |
| 7 |
|
0red |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> 0 e. RR ) |
| 8 |
|
lt0neg2 |
|- ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) |
| 9 |
1 8
|
ax-mp |
|- ( 0 < _pi <-> -u _pi < 0 ) |
| 10 |
2 9
|
mpbi |
|- -u _pi < 0 |
| 11 |
10
|
a1i |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> -u _pi < 0 ) |
| 12 |
|
0re |
|- 0 e. RR |
| 13 |
12 1 2
|
ltleii |
|- 0 <_ _pi |
| 14 |
13
|
a1i |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> 0 <_ _pi ) |
| 15 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( 0 e. ( -u _pi (,] _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ _pi ) ) ) |
| 16 |
7 11 14 15
|
mpbir3and |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> 0 e. ( -u _pi (,] _pi ) ) |
| 17 |
6 1 16
|
mp2an |
|- 0 e. ( -u _pi (,] _pi ) |
| 18 |
|
simpr |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> _pi e. RR ) |
| 19 |
5 12 1
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
| 20 |
10 2 19
|
mp2an |
|- -u _pi < _pi |
| 21 |
20
|
a1i |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> -u _pi < _pi ) |
| 22 |
1
|
leidi |
|- _pi <_ _pi |
| 23 |
22
|
a1i |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> _pi <_ _pi ) |
| 24 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( _pi e. ( -u _pi (,] _pi ) <-> ( _pi e. RR /\ -u _pi < _pi /\ _pi <_ _pi ) ) ) |
| 25 |
18 21 23 24
|
mpbir3and |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> _pi e. ( -u _pi (,] _pi ) ) |
| 26 |
6 1 25
|
mp2an |
|- _pi e. ( -u _pi (,] _pi ) |
| 27 |
|
bj-inftyexpiinj |
|- ( ( 0 e. ( -u _pi (,] _pi ) /\ _pi e. ( -u _pi (,] _pi ) ) -> ( 0 = _pi <-> ( inftyexpi ` 0 ) = ( inftyexpi ` _pi ) ) ) |
| 28 |
17 26 27
|
mp2an |
|- ( 0 = _pi <-> ( inftyexpi ` 0 ) = ( inftyexpi ` _pi ) ) |
| 29 |
4 28
|
mtbi |
|- -. ( inftyexpi ` 0 ) = ( inftyexpi ` _pi ) |
| 30 |
|
df-bj-minfty |
|- minfty = ( inftyexpi ` _pi ) |
| 31 |
30
|
eqeq2i |
|- ( ( inftyexpi ` 0 ) = minfty <-> ( inftyexpi ` 0 ) = ( inftyexpi ` _pi ) ) |
| 32 |
29 31
|
mtbir |
|- -. ( inftyexpi ` 0 ) = minfty |
| 33 |
|
df-bj-pinfty |
|- pinfty = ( inftyexpi ` 0 ) |
| 34 |
33
|
eqeq1i |
|- ( pinfty = minfty <-> ( inftyexpi ` 0 ) = minfty ) |
| 35 |
32 34
|
mtbir |
|- -. pinfty = minfty |
| 36 |
35
|
neir |
|- pinfty =/= minfty |