Step |
Hyp |
Ref |
Expression |
1 |
|
pire |
|- _pi e. RR |
2 |
|
pipos |
|- 0 < _pi |
3 |
1 2
|
gt0ne0ii |
|- _pi =/= 0 |
4 |
3
|
nesymi |
|- -. 0 = _pi |
5 |
1
|
renegcli |
|- -u _pi e. RR |
6 |
5
|
rexri |
|- -u _pi e. RR* |
7 |
|
0red |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> 0 e. RR ) |
8 |
|
lt0neg2 |
|- ( _pi e. RR -> ( 0 < _pi <-> -u _pi < 0 ) ) |
9 |
1 8
|
ax-mp |
|- ( 0 < _pi <-> -u _pi < 0 ) |
10 |
2 9
|
mpbi |
|- -u _pi < 0 |
11 |
10
|
a1i |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> -u _pi < 0 ) |
12 |
|
0re |
|- 0 e. RR |
13 |
12 1 2
|
ltleii |
|- 0 <_ _pi |
14 |
13
|
a1i |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> 0 <_ _pi ) |
15 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( 0 e. ( -u _pi (,] _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 <_ _pi ) ) ) |
16 |
7 11 14 15
|
mpbir3and |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> 0 e. ( -u _pi (,] _pi ) ) |
17 |
6 1 16
|
mp2an |
|- 0 e. ( -u _pi (,] _pi ) |
18 |
|
simpr |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> _pi e. RR ) |
19 |
5 12 1
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
20 |
10 2 19
|
mp2an |
|- -u _pi < _pi |
21 |
20
|
a1i |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> -u _pi < _pi ) |
22 |
1
|
leidi |
|- _pi <_ _pi |
23 |
22
|
a1i |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> _pi <_ _pi ) |
24 |
|
elioc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> ( _pi e. ( -u _pi (,] _pi ) <-> ( _pi e. RR /\ -u _pi < _pi /\ _pi <_ _pi ) ) ) |
25 |
18 21 23 24
|
mpbir3and |
|- ( ( -u _pi e. RR* /\ _pi e. RR ) -> _pi e. ( -u _pi (,] _pi ) ) |
26 |
6 1 25
|
mp2an |
|- _pi e. ( -u _pi (,] _pi ) |
27 |
|
bj-inftyexpiinj |
|- ( ( 0 e. ( -u _pi (,] _pi ) /\ _pi e. ( -u _pi (,] _pi ) ) -> ( 0 = _pi <-> ( inftyexpi ` 0 ) = ( inftyexpi ` _pi ) ) ) |
28 |
17 26 27
|
mp2an |
|- ( 0 = _pi <-> ( inftyexpi ` 0 ) = ( inftyexpi ` _pi ) ) |
29 |
4 28
|
mtbi |
|- -. ( inftyexpi ` 0 ) = ( inftyexpi ` _pi ) |
30 |
|
df-bj-minfty |
|- minfty = ( inftyexpi ` _pi ) |
31 |
30
|
eqeq2i |
|- ( ( inftyexpi ` 0 ) = minfty <-> ( inftyexpi ` 0 ) = ( inftyexpi ` _pi ) ) |
32 |
29 31
|
mtbir |
|- -. ( inftyexpi ` 0 ) = minfty |
33 |
|
df-bj-pinfty |
|- pinfty = ( inftyexpi ` 0 ) |
34 |
33
|
eqeq1i |
|- ( pinfty = minfty <-> ( inftyexpi ` 0 ) = minfty ) |
35 |
32 34
|
mtbir |
|- -. pinfty = minfty |
36 |
35
|
neir |
|- pinfty =/= minfty |