Step |
Hyp |
Ref |
Expression |
1 |
|
pire |
⊢ π ∈ ℝ |
2 |
|
pipos |
⊢ 0 < π |
3 |
1 2
|
gt0ne0ii |
⊢ π ≠ 0 |
4 |
3
|
nesymi |
⊢ ¬ 0 = π |
5 |
1
|
renegcli |
⊢ - π ∈ ℝ |
6 |
5
|
rexri |
⊢ - π ∈ ℝ* |
7 |
|
0red |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → 0 ∈ ℝ ) |
8 |
|
lt0neg2 |
⊢ ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) ) |
9 |
1 8
|
ax-mp |
⊢ ( 0 < π ↔ - π < 0 ) |
10 |
2 9
|
mpbi |
⊢ - π < 0 |
11 |
10
|
a1i |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → - π < 0 ) |
12 |
|
0re |
⊢ 0 ∈ ℝ |
13 |
12 1 2
|
ltleii |
⊢ 0 ≤ π |
14 |
13
|
a1i |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → 0 ≤ π ) |
15 |
|
elioc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( 0 ∈ ( - π (,] π ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 ≤ π ) ) ) |
16 |
7 11 14 15
|
mpbir3and |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → 0 ∈ ( - π (,] π ) ) |
17 |
6 1 16
|
mp2an |
⊢ 0 ∈ ( - π (,] π ) |
18 |
|
simpr |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → π ∈ ℝ ) |
19 |
5 12 1
|
lttri |
⊢ ( ( - π < 0 ∧ 0 < π ) → - π < π ) |
20 |
10 2 19
|
mp2an |
⊢ - π < π |
21 |
20
|
a1i |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → - π < π ) |
22 |
1
|
leidi |
⊢ π ≤ π |
23 |
22
|
a1i |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → π ≤ π ) |
24 |
|
elioc2 |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( π ∈ ( - π (,] π ) ↔ ( π ∈ ℝ ∧ - π < π ∧ π ≤ π ) ) ) |
25 |
18 21 23 24
|
mpbir3and |
⊢ ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → π ∈ ( - π (,] π ) ) |
26 |
6 1 25
|
mp2an |
⊢ π ∈ ( - π (,] π ) |
27 |
|
bj-inftyexpiinj |
⊢ ( ( 0 ∈ ( - π (,] π ) ∧ π ∈ ( - π (,] π ) ) → ( 0 = π ↔ ( +∞ei ‘ 0 ) = ( +∞ei ‘ π ) ) ) |
28 |
17 26 27
|
mp2an |
⊢ ( 0 = π ↔ ( +∞ei ‘ 0 ) = ( +∞ei ‘ π ) ) |
29 |
4 28
|
mtbi |
⊢ ¬ ( +∞ei ‘ 0 ) = ( +∞ei ‘ π ) |
30 |
|
df-bj-minfty |
⊢ -∞ = ( +∞ei ‘ π ) |
31 |
30
|
eqeq2i |
⊢ ( ( +∞ei ‘ 0 ) = -∞ ↔ ( +∞ei ‘ 0 ) = ( +∞ei ‘ π ) ) |
32 |
29 31
|
mtbir |
⊢ ¬ ( +∞ei ‘ 0 ) = -∞ |
33 |
|
df-bj-pinfty |
⊢ +∞ = ( +∞ei ‘ 0 ) |
34 |
33
|
eqeq1i |
⊢ ( +∞ = -∞ ↔ ( +∞ei ‘ 0 ) = -∞ ) |
35 |
32 34
|
mtbir |
⊢ ¬ +∞ = -∞ |
36 |
35
|
neir |
⊢ +∞ ≠ -∞ |