Metamath Proof Explorer


Theorem bj-pinftynminfty

Description: The extended complex numbers pinfty and minfty are different. (Contributed by BJ, 27-Jun-2019)

Ref Expression
Assertion bj-pinftynminfty +∞ ≠ -∞

Proof

Step Hyp Ref Expression
1 pire π ∈ ℝ
2 pipos 0 < π
3 1 2 gt0ne0ii π ≠ 0
4 3 nesymi ¬ 0 = π
5 1 renegcli - π ∈ ℝ
6 5 rexri - π ∈ ℝ*
7 0red ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → 0 ∈ ℝ )
8 lt0neg2 ( π ∈ ℝ → ( 0 < π ↔ - π < 0 ) )
9 1 8 ax-mp ( 0 < π ↔ - π < 0 )
10 2 9 mpbi - π < 0
11 10 a1i ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → - π < 0 )
12 0re 0 ∈ ℝ
13 12 1 2 ltleii 0 ≤ π
14 13 a1i ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → 0 ≤ π )
15 elioc2 ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( 0 ∈ ( - π (,] π ) ↔ ( 0 ∈ ℝ ∧ - π < 0 ∧ 0 ≤ π ) ) )
16 7 11 14 15 mpbir3and ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → 0 ∈ ( - π (,] π ) )
17 6 1 16 mp2an 0 ∈ ( - π (,] π )
18 simpr ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → π ∈ ℝ )
19 5 12 1 lttri ( ( - π < 0 ∧ 0 < π ) → - π < π )
20 10 2 19 mp2an - π < π
21 20 a1i ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → - π < π )
22 1 leidi π ≤ π
23 22 a1i ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → π ≤ π )
24 elioc2 ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → ( π ∈ ( - π (,] π ) ↔ ( π ∈ ℝ ∧ - π < π ∧ π ≤ π ) ) )
25 18 21 23 24 mpbir3and ( ( - π ∈ ℝ* ∧ π ∈ ℝ ) → π ∈ ( - π (,] π ) )
26 6 1 25 mp2an π ∈ ( - π (,] π )
27 bj-inftyexpiinj ( ( 0 ∈ ( - π (,] π ) ∧ π ∈ ( - π (,] π ) ) → ( 0 = π ↔ ( +∞ei ‘ 0 ) = ( +∞ei ‘ π ) ) )
28 17 26 27 mp2an ( 0 = π ↔ ( +∞ei ‘ 0 ) = ( +∞ei ‘ π ) )
29 4 28 mtbi ¬ ( +∞ei ‘ 0 ) = ( +∞ei ‘ π )
30 df-bj-minfty -∞ = ( +∞ei ‘ π )
31 30 eqeq2i ( ( +∞ei ‘ 0 ) = -∞ ↔ ( +∞ei ‘ 0 ) = ( +∞ei ‘ π ) )
32 29 31 mtbir ¬ ( +∞ei ‘ 0 ) = -∞
33 df-bj-pinfty +∞ = ( +∞ei ‘ 0 )
34 33 eqeq1i ( +∞ = -∞ ↔ ( +∞ei ‘ 0 ) = -∞ )
35 32 34 mtbir ¬ +∞ = -∞
36 35 neir +∞ ≠ -∞