Metamath Proof Explorer


Theorem bj-modssabl

Description: (The additive groups of) modules are abelian groups. (The elemental version is lmodabl ; see also lmodgrp and lmodcmn .) (Contributed by BJ, 9-Jun-2019)

Ref Expression
Assertion bj-modssabl LMod ⊆ Abel

Proof

Step Hyp Ref Expression
1 lmodabl ( 𝑥 ∈ LMod → 𝑥 ∈ Abel )
2 1 ssriv LMod ⊆ Abel