Metamath Proof Explorer


Theorem bj-nul

Description: Two formulations of the axiom of the empty set ax-nul . Proposal: place it right before ax-nul . (Contributed by BJ, 30-Nov-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nul ( ∅ ∈ V ↔ ∃ 𝑥𝑦 ¬ 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 isset ( ∅ ∈ V ↔ ∃ 𝑥 𝑥 = ∅ )
2 eq0 ( 𝑥 = ∅ ↔ ∀ 𝑦 ¬ 𝑦𝑥 )
3 2 exbii ( ∃ 𝑥 𝑥 = ∅ ↔ ∃ 𝑥𝑦 ¬ 𝑦𝑥 )
4 1 3 bitri ( ∅ ∈ V ↔ ∃ 𝑥𝑦 ¬ 𝑦𝑥 )