Metamath Proof Explorer


Theorem bj-nul

Description: Two formulations of the axiom of the empty set ax-nul . Proposal: place it right before ax-nul . (Contributed by BJ, 30-Nov-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nul
|- ( (/) e. _V <-> E. x A. y -. y e. x )

Proof

Step Hyp Ref Expression
1 isset
 |-  ( (/) e. _V <-> E. x x = (/) )
2 eq0
 |-  ( x = (/) <-> A. y -. y e. x )
3 2 exbii
 |-  ( E. x x = (/) <-> E. x A. y -. y e. x )
4 1 3 bitri
 |-  ( (/) e. _V <-> E. x A. y -. y e. x )