Metamath Proof Explorer


Theorem bj-nuliota

Description: Definition of the empty set using the definite description binder. See also bj-nuliotaALT . (Contributed by BJ, 30-Nov-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nuliota ∅ = ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 1 eueqi ∃! 𝑥 𝑥 = ∅
3 eq0 ( 𝑥 = ∅ ↔ ∀ 𝑦 ¬ 𝑦𝑥 )
4 3 eubii ( ∃! 𝑥 𝑥 = ∅ ↔ ∃! 𝑥𝑦 ¬ 𝑦𝑥 )
5 2 4 mpbi ∃! 𝑥𝑦 ¬ 𝑦𝑥
6 eleq2 ( 𝑥 = ∅ → ( 𝑦𝑥𝑦 ∈ ∅ ) )
7 6 notbid ( 𝑥 = ∅ → ( ¬ 𝑦𝑥 ↔ ¬ 𝑦 ∈ ∅ ) )
8 7 albidv ( 𝑥 = ∅ → ( ∀ 𝑦 ¬ 𝑦𝑥 ↔ ∀ 𝑦 ¬ 𝑦 ∈ ∅ ) )
9 8 iota2 ( ( ∅ ∈ V ∧ ∃! 𝑥𝑦 ¬ 𝑦𝑥 ) → ( ∀ 𝑦 ¬ 𝑦 ∈ ∅ ↔ ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 ) = ∅ ) )
10 1 5 9 mp2an ( ∀ 𝑦 ¬ 𝑦 ∈ ∅ ↔ ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 ) = ∅ )
11 noel ¬ 𝑦 ∈ ∅
12 10 11 mpgbi ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 ) = ∅
13 12 eqcomi ∅ = ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 )