| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 | 1 | eueqi | ⊢ ∃! 𝑥 𝑥  =  ∅ | 
						
							| 3 |  | eq0 | ⊢ ( 𝑥  =  ∅  ↔  ∀ 𝑦 ¬  𝑦  ∈  𝑥 ) | 
						
							| 4 | 3 | eubii | ⊢ ( ∃! 𝑥 𝑥  =  ∅  ↔  ∃! 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 ) | 
						
							| 5 | 2 4 | mpbi | ⊢ ∃! 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 | 
						
							| 6 |  | eleq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝑦  ∈  𝑥  ↔  𝑦  ∈  ∅ ) ) | 
						
							| 7 | 6 | notbid | ⊢ ( 𝑥  =  ∅  →  ( ¬  𝑦  ∈  𝑥  ↔  ¬  𝑦  ∈  ∅ ) ) | 
						
							| 8 | 7 | albidv | ⊢ ( 𝑥  =  ∅  →  ( ∀ 𝑦 ¬  𝑦  ∈  𝑥  ↔  ∀ 𝑦 ¬  𝑦  ∈  ∅ ) ) | 
						
							| 9 | 8 | iota2 | ⊢ ( ( ∅  ∈  V  ∧  ∃! 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 )  →  ( ∀ 𝑦 ¬  𝑦  ∈  ∅  ↔  ( ℩ 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 )  =  ∅ ) ) | 
						
							| 10 | 1 5 9 | mp2an | ⊢ ( ∀ 𝑦 ¬  𝑦  ∈  ∅  ↔  ( ℩ 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 )  =  ∅ ) | 
						
							| 11 |  | noel | ⊢ ¬  𝑦  ∈  ∅ | 
						
							| 12 | 10 11 | mpgbi | ⊢ ( ℩ 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 )  =  ∅ | 
						
							| 13 | 12 | eqcomi | ⊢ ∅  =  ( ℩ 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 ) |