Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
1
|
eueqi |
⊢ ∃! 𝑥 𝑥 = ∅ |
3 |
|
eq0 |
⊢ ( 𝑥 = ∅ ↔ ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |
4 |
3
|
eubii |
⊢ ( ∃! 𝑥 𝑥 = ∅ ↔ ∃! 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |
5 |
2 4
|
mpbi |
⊢ ∃! 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 |
6 |
|
eleq2 |
⊢ ( 𝑥 = ∅ → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ∅ ) ) |
7 |
6
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ 𝑦 ∈ 𝑥 ↔ ¬ 𝑦 ∈ ∅ ) ) |
8 |
7
|
albidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ¬ 𝑦 ∈ ∅ ) ) |
9 |
8
|
iota2 |
⊢ ( ( ∅ ∈ V ∧ ∃! 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) → ( ∀ 𝑦 ¬ 𝑦 ∈ ∅ ↔ ( ℩ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) = ∅ ) ) |
10 |
1 5 9
|
mp2an |
⊢ ( ∀ 𝑦 ¬ 𝑦 ∈ ∅ ↔ ( ℩ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) = ∅ ) |
11 |
|
noel |
⊢ ¬ 𝑦 ∈ ∅ |
12 |
10 11
|
mpgbi |
⊢ ( ℩ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) = ∅ |
13 |
12
|
eqcomi |
⊢ ∅ = ( ℩ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |