Metamath Proof Explorer


Theorem bj-nuliota

Description: Definition of the empty set using the definite description binder. See also bj-nuliotaALT . (Contributed by BJ, 30-Nov-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-nuliota =ιx|y¬yx

Proof

Step Hyp Ref Expression
1 0ex V
2 1 eueqi ∃!xx=
3 eq0 x=y¬yx
4 3 eubii ∃!xx=∃!xy¬yx
5 2 4 mpbi ∃!xy¬yx
6 eleq2 x=yxy
7 6 notbid x=¬yx¬y
8 7 albidv x=y¬yxy¬y
9 8 iota2 V∃!xy¬yxy¬yιx|y¬yx=
10 1 5 9 mp2an y¬yιx|y¬yx=
11 noel ¬y
12 10 11 mpgbi ιx|y¬yx=
13 12 eqcomi =ιx|y¬yx