Metamath Proof Explorer


Theorem bj-nuliotaALT

Description: Alternate proof of bj-nuliota . Note that this alternate proof uses the fact that iota x ph evaluates to (/) when there is no x satisfying ph ( iotanul ). This is an implementation detail of the encoding currently used in set.mm and should be avoided. (Contributed by BJ, 30-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion bj-nuliotaALT ∅ = ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 )

Proof

Step Hyp Ref Expression
1 0ss ∅ ⊆ ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 )
2 iotassuni ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 ) ⊆ { 𝑥 ∣ ∀ 𝑦 ¬ 𝑦𝑥 }
3 eq0 ( 𝑥 = ∅ ↔ ∀ 𝑦 ¬ 𝑦𝑥 )
4 3 bicomi ( ∀ 𝑦 ¬ 𝑦𝑥𝑥 = ∅ )
5 4 abbii { 𝑥 ∣ ∀ 𝑦 ¬ 𝑦𝑥 } = { 𝑥𝑥 = ∅ }
6 5 unieqi { 𝑥 ∣ ∀ 𝑦 ¬ 𝑦𝑥 } = { 𝑥𝑥 = ∅ }
7 df-sn { ∅ } = { 𝑥𝑥 = ∅ }
8 7 eqcomi { 𝑥𝑥 = ∅ } = { ∅ }
9 8 unieqi { 𝑥𝑥 = ∅ } = { ∅ }
10 0ex ∅ ∈ V
11 10 unisn { ∅ } = ∅
12 6 9 11 3eqtri { 𝑥 ∣ ∀ 𝑦 ¬ 𝑦𝑥 } = ∅
13 2 12 sseqtri ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 ) ⊆ ∅
14 1 13 eqssi ∅ = ( ℩ 𝑥𝑦 ¬ 𝑦𝑥 )