| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
⊢ ∅ ⊆ ( ℩ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |
| 2 |
|
iotassuni |
⊢ ( ℩ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) ⊆ ∪ { 𝑥 ∣ ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 } |
| 3 |
|
eq0 |
⊢ ( 𝑥 = ∅ ↔ ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |
| 4 |
3
|
bicomi |
⊢ ( ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ 𝑥 = ∅ ) |
| 5 |
4
|
abbii |
⊢ { 𝑥 ∣ ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 } = { 𝑥 ∣ 𝑥 = ∅ } |
| 6 |
5
|
unieqi |
⊢ ∪ { 𝑥 ∣ ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 } = ∪ { 𝑥 ∣ 𝑥 = ∅ } |
| 7 |
|
df-sn |
⊢ { ∅ } = { 𝑥 ∣ 𝑥 = ∅ } |
| 8 |
7
|
eqcomi |
⊢ { 𝑥 ∣ 𝑥 = ∅ } = { ∅ } |
| 9 |
8
|
unieqi |
⊢ ∪ { 𝑥 ∣ 𝑥 = ∅ } = ∪ { ∅ } |
| 10 |
|
0ex |
⊢ ∅ ∈ V |
| 11 |
10
|
unisn |
⊢ ∪ { ∅ } = ∅ |
| 12 |
6 9 11
|
3eqtri |
⊢ ∪ { 𝑥 ∣ ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 } = ∅ |
| 13 |
2 12
|
sseqtri |
⊢ ( ℩ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) ⊆ ∅ |
| 14 |
1 13
|
eqssi |
⊢ ∅ = ( ℩ 𝑥 ∀ 𝑦 ¬ 𝑦 ∈ 𝑥 ) |