| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ss | ⊢ ∅  ⊆  ( ℩ 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 ) | 
						
							| 2 |  | iotassuni | ⊢ ( ℩ 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 )  ⊆  ∪  { 𝑥  ∣  ∀ 𝑦 ¬  𝑦  ∈  𝑥 } | 
						
							| 3 |  | eq0 | ⊢ ( 𝑥  =  ∅  ↔  ∀ 𝑦 ¬  𝑦  ∈  𝑥 ) | 
						
							| 4 | 3 | bicomi | ⊢ ( ∀ 𝑦 ¬  𝑦  ∈  𝑥  ↔  𝑥  =  ∅ ) | 
						
							| 5 | 4 | abbii | ⊢ { 𝑥  ∣  ∀ 𝑦 ¬  𝑦  ∈  𝑥 }  =  { 𝑥  ∣  𝑥  =  ∅ } | 
						
							| 6 | 5 | unieqi | ⊢ ∪  { 𝑥  ∣  ∀ 𝑦 ¬  𝑦  ∈  𝑥 }  =  ∪  { 𝑥  ∣  𝑥  =  ∅ } | 
						
							| 7 |  | df-sn | ⊢ { ∅ }  =  { 𝑥  ∣  𝑥  =  ∅ } | 
						
							| 8 | 7 | eqcomi | ⊢ { 𝑥  ∣  𝑥  =  ∅ }  =  { ∅ } | 
						
							| 9 | 8 | unieqi | ⊢ ∪  { 𝑥  ∣  𝑥  =  ∅ }  =  ∪  { ∅ } | 
						
							| 10 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 11 | 10 | unisn | ⊢ ∪  { ∅ }  =  ∅ | 
						
							| 12 | 6 9 11 | 3eqtri | ⊢ ∪  { 𝑥  ∣  ∀ 𝑦 ¬  𝑦  ∈  𝑥 }  =  ∅ | 
						
							| 13 | 2 12 | sseqtri | ⊢ ( ℩ 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 )  ⊆  ∅ | 
						
							| 14 | 1 13 | eqssi | ⊢ ∅  =  ( ℩ 𝑥 ∀ 𝑦 ¬  𝑦  ∈  𝑥 ) |