Metamath Proof Explorer


Theorem bj-vtoclgfALT

Description: Alternate proof of vtoclgf . Proof from vtoclgft . (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses bj-vtoclgfALT.1 𝑥 𝐴
bj-vtoclgfALT.2 𝑥 𝜓
bj-vtoclgfALT.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
bj-vtoclgfALT.4 𝜑
Assertion bj-vtoclgfALT ( 𝐴𝑉𝜓 )

Proof

Step Hyp Ref Expression
1 bj-vtoclgfALT.1 𝑥 𝐴
2 bj-vtoclgfALT.2 𝑥 𝜓
3 bj-vtoclgfALT.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 bj-vtoclgfALT.4 𝜑
5 1 2 pm3.2i ( 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 )
6 3 ax-gen 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
7 4 ax-gen 𝑥 𝜑
8 6 7 pm3.2i ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ ∀ 𝑥 𝜑 )
9 vtoclgft ( ( ( 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) ∧ 𝐴𝑉 ) → 𝜓 )
10 5 8 9 mp3an12 ( 𝐴𝑉𝜓 )