Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Set theory: miscellaneous
bj-vtoclgfALT
Metamath Proof Explorer
Description: Alternate proof of vtoclgf . Proof from vtoclgft . (This may have
been the original proof before shortening.) (Contributed by BJ , 30-Sep-2019) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
bj-vtoclgfALT.1
⊢ Ⅎ 𝑥 𝐴
bj-vtoclgfALT.2
⊢ Ⅎ 𝑥 𝜓
bj-vtoclgfALT.3
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
bj-vtoclgfALT.4
⊢ 𝜑
Assertion
bj-vtoclgfALT
⊢ ( 𝐴 ∈ 𝑉 → 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
bj-vtoclgfALT.1
⊢ Ⅎ 𝑥 𝐴
2
bj-vtoclgfALT.2
⊢ Ⅎ 𝑥 𝜓
3
bj-vtoclgfALT.3
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
4
bj-vtoclgfALT.4
⊢ 𝜑
5
1 2
pm3.2i
⊢ ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 )
6
3
ax-gen
⊢ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
7
4
ax-gen
⊢ ∀ 𝑥 𝜑
8
6 7
pm3.2i
⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 )
9
vtoclgft
⊢ ( ( ( Ⅎ 𝑥 𝐴 ∧ Ⅎ 𝑥 𝜓 ) ∧ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ ∀ 𝑥 𝜑 ) ∧ 𝐴 ∈ 𝑉 ) → 𝜓 )
10
5 8 9
mp3an12
⊢ ( 𝐴 ∈ 𝑉 → 𝜓 )