Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for BJ Set theory Set theory: miscellaneous bj-vtoclgfALT  
				
		 
		
			
		 
		Description:   Alternate proof of vtoclgf  .  Proof from vtoclgft  .  (This may have
       been the original proof before shortening.)  (Contributed by BJ , 30-Sep-2019)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						bj-vtoclgfALT.1 ⊢  Ⅎ  𝑥  𝐴   
					
						bj-vtoclgfALT.2 ⊢  Ⅎ 𝑥  𝜓   
					
						bj-vtoclgfALT.3 ⊢  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
					
						bj-vtoclgfALT.4 ⊢  𝜑   
				
					Assertion 
					bj-vtoclgfALT ⊢   ( 𝐴   ∈  𝑉   →  𝜓  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							bj-vtoclgfALT.1 ⊢  Ⅎ  𝑥  𝐴   
						
							2 
								
							 
							bj-vtoclgfALT.2 ⊢  Ⅎ 𝑥  𝜓   
						
							3 
								
							 
							bj-vtoclgfALT.3 ⊢  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
						
							4 
								
							 
							bj-vtoclgfALT.4 ⊢  𝜑   
						
							5 
								1  2 
							 
							pm3.2i ⊢  ( Ⅎ  𝑥  𝐴   ∧  Ⅎ 𝑥  𝜓  )  
						
							6 
								3 
							 
							ax-gen ⊢  ∀ 𝑥  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  
						
							7 
								4 
							 
							ax-gen ⊢  ∀ 𝑥  𝜑   
						
							8 
								6  7 
							 
							pm3.2i ⊢  ( ∀ 𝑥  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  ∧  ∀ 𝑥  𝜑  )  
						
							9 
								
							 
							vtoclgft ⊢  ( ( ( Ⅎ  𝑥  𝐴   ∧  Ⅎ 𝑥  𝜓  )  ∧  ( ∀ 𝑥  ( 𝑥   =  𝐴   →  ( 𝜑   ↔  𝜓  ) )  ∧  ∀ 𝑥  𝜑  )  ∧  𝐴   ∈  𝑉  )  →  𝜓  )  
						
							10 
								5  8  9 
							 
							mp3an12 ⊢  ( 𝐴   ∈  𝑉   →  𝜓  )