Metamath Proof Explorer


Theorem bj-vtoclgfALT

Description: Alternate proof of vtoclgf . Proof from vtoclgft . (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses bj-vtoclgfALT.1
|- F/_ x A
bj-vtoclgfALT.2
|- F/ x ps
bj-vtoclgfALT.3
|- ( x = A -> ( ph <-> ps ) )
bj-vtoclgfALT.4
|- ph
Assertion bj-vtoclgfALT
|- ( A e. V -> ps )

Proof

Step Hyp Ref Expression
1 bj-vtoclgfALT.1
 |-  F/_ x A
2 bj-vtoclgfALT.2
 |-  F/ x ps
3 bj-vtoclgfALT.3
 |-  ( x = A -> ( ph <-> ps ) )
4 bj-vtoclgfALT.4
 |-  ph
5 1 2 pm3.2i
 |-  ( F/_ x A /\ F/ x ps )
6 3 ax-gen
 |-  A. x ( x = A -> ( ph <-> ps ) )
7 4 ax-gen
 |-  A. x ph
8 6 7 pm3.2i
 |-  ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph )
9 vtoclgft
 |-  ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) /\ A e. V ) -> ps )
10 5 8 9 mp3an12
 |-  ( A e. V -> ps )