Description: Alternate proof of vtoclgf . Proof from vtoclgft . (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-vtoclgfALT.1 | |- F/_ x A |
|
bj-vtoclgfALT.2 | |- F/ x ps |
||
bj-vtoclgfALT.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
bj-vtoclgfALT.4 | |- ph |
||
Assertion | bj-vtoclgfALT | |- ( A e. V -> ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-vtoclgfALT.1 | |- F/_ x A |
|
2 | bj-vtoclgfALT.2 | |- F/ x ps |
|
3 | bj-vtoclgfALT.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
4 | bj-vtoclgfALT.4 | |- ph |
|
5 | 1 2 | pm3.2i | |- ( F/_ x A /\ F/ x ps ) |
6 | 3 | ax-gen | |- A. x ( x = A -> ( ph <-> ps ) ) |
7 | 4 | ax-gen | |- A. x ph |
8 | 6 7 | pm3.2i | |- ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) |
9 | vtoclgft | |- ( ( ( F/_ x A /\ F/ x ps ) /\ ( A. x ( x = A -> ( ph <-> ps ) ) /\ A. x ph ) /\ A e. V ) -> ps ) |
|
10 | 5 8 9 | mp3an12 | |- ( A e. V -> ps ) |