Metamath Proof Explorer


Theorem bj-vtoclgfALT

Description: Alternate proof of vtoclgf . Proof from vtoclgft . (This may have been the original proof before shortening.) (Contributed by BJ, 30-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses bj-vtoclgfALT.1 _ x A
bj-vtoclgfALT.2 x ψ
bj-vtoclgfALT.3 x = A φ ψ
bj-vtoclgfALT.4 φ
Assertion bj-vtoclgfALT A V ψ

Proof

Step Hyp Ref Expression
1 bj-vtoclgfALT.1 _ x A
2 bj-vtoclgfALT.2 x ψ
3 bj-vtoclgfALT.3 x = A φ ψ
4 bj-vtoclgfALT.4 φ
5 1 2 pm3.2i _ x A x ψ
6 3 ax-gen x x = A φ ψ
7 4 ax-gen x φ
8 6 7 pm3.2i x x = A φ ψ x φ
9 vtoclgft _ x A x ψ x x = A φ ψ x φ A V ψ
10 5 8 9 mp3an12 A V ψ