Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for BJ Set theory Set theory: miscellaneous bj-vtoclgfALT  
				
		 
		
			
		 
		Description:   Alternate proof of vtoclgf  .  Proof from vtoclgft  .  (This may have
       been the original proof before shortening.)  (Contributed by BJ , 30-Sep-2019)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						bj-vtoclgfALT.1   ⊢    Ⅎ   _  x  A       
					 
					
						bj-vtoclgfALT.2   ⊢   Ⅎ  x   ψ        
					 
					
						bj-vtoclgfALT.3    ⊢   x  =  A    →    φ   ↔   ψ         
					 
					
						bj-vtoclgfALT.4   ⊢   φ      
					 
				
					Assertion 
					bj-vtoclgfALT    ⊢   A  ∈  V    →   ψ        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							bj-vtoclgfALT.1  ⊢    Ⅎ   _  x  A       
						
							2 
								
							 
							bj-vtoclgfALT.2  ⊢   Ⅎ  x   ψ        
						
							3 
								
							 
							bj-vtoclgfALT.3   ⊢   x  =  A    →    φ   ↔   ψ         
						
							4 
								
							 
							bj-vtoclgfALT.4  ⊢   φ      
						
							5 
								1  2 
							 
							pm3.2i  ⊢     Ⅎ   _  x  A    ∧   Ⅎ  x   ψ         
						
							6 
								3 
							 
							ax-gen  ⊢   ∀  x    x  =  A    →    φ   ↔   ψ          
						
							7 
								4 
							 
							ax-gen  ⊢   ∀  x   φ        
						
							8 
								6  7 
							 
							pm3.2i  ⊢    ∀  x    x  =  A    →    φ   ↔   ψ       ∧   ∀  x   φ         
						
							9 
								
							 
							vtoclgft   ⊢      Ⅎ   _  x  A    ∧   Ⅎ  x   ψ      ∧    ∀  x    x  =  A    →    φ   ↔   ψ       ∧   ∀  x   φ      ∧   A  ∈  V     →   ψ        
						
							10 
								5  8  9 
							 
							mp3an12   ⊢   A  ∈  V    →   ψ